
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2006

Large-scale methods in computational genomics
Anantharaman Kalyanaraman
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Bioinformatics Commons, and the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Kalyanaraman, Anantharaman, "Large-scale methods in computational genomics " (2006). Retrospective Theses and Dissertations. 1529.
https://lib.dr.iastate.edu/rtd/1529

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F1529&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F1529&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F1529&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F1529&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F1529&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F1529&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=lib.dr.iastate.edu%2Frtd%2F1529&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Frtd%2F1529&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/1529?utm_source=lib.dr.iastate.edu%2Frtd%2F1529&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Large-scale methods in computational genomics

by

Anantharaman Kalyanaraman

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering

Program of Study Committee:
Srinivas Aluru, Major Professor

Volker Brendel
Suraj C. Kothari

Patrick S. Schnable
Srikanta Tirthapura

Iowa State University

Ames, Iowa

2006

Copyright © Anantharaman Kalyanaraman, 2006. All rights reserved.

www.manaraa.com

UMI Number: 3229090

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 3229090

Copyright 2006 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

www.manaraa.com

11

Graduate College
Iowa State University

This is to certify that the doctoral dissertation of

Anantharaman Kalyanaraman

has met the dissertation requirements of Iowa State University

Major Professor

For the Major Program

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

iii

DEDICATION

To Kirti

www.manaraa.com

iv

TABLE OF CONTENTS

LIST OF TABLES vii

LIST OF FIGURES ix

ACKNOWLEDGEMENTS xiii

ABSTRACT xv

CHAPTER 1. INTRODUCTION 1

CHAPTER 2. SEQUENCE ANALYSIS: BIOLOGICAL BACKGROUND

AND TERMINOLOGY 7

2.1 Genomic Repeats 8

2.1.1 Transposons 9

2.2 Sequencing Technologies 9

2.2.1 Expressed Sequence Tag Sequencing 10

2.2.2 Whole Genome Sequencing 13

2.2.3 454 Sequencing 14

2.3 Pairwise Sequence Alignment Computation 15

CHAPTER 3. SEQUENCE CLUSTERING: PROBLEMS AND APPLI­

CATIONS 18

3.1 Clustering DNA Sequences 19

3.1.1 Clustering of Expressed Sequence Tags 19

3.1.2 Clustering for Genome Assembly 26

3.1.3 Computational Challenges 29

3.2 Literature Review 30

www.manaraa.com

V

3.2.1 Methods for EST Clustering and Genome Assembly 30

3.2.2 Discussion of Related Work 36

3.2.3 Performance Evaluation of Related Work 38

3.2.4 Need for Scalable High-performance Computing Methods 41

CHAPTER 4. A SCALABLE PARALLEL CLUSTERING FRAMEWORK

FOR LARGE-SCALE SEQUENCE ANALYSIS 43

4.1 The Sequence Clustering Problem 43

4.2 A Serial Clustering Algorithm 44

4.2.1 Reducing the Number of Pairs Aligned 46

4.2.2 An Optimal Algorithm for On-demand Generation of Promising Pairs . 48

4.3 A Space and Time Efficient Parallel Clustering Algorithm 58

4.3.1 Parallel Generalized Suffix Tree Construction 58

4.3.2 Detecting Overlaps and Clustering In Parallel 60

4.3.3 Software Availability 66

4.4 Results and Applications 66

4.4.1 EST Clustering 66

4.4.2 Clustering for Genome Assembly 75

CHAPTER 5. DETECTION OF LTR RETROTRANSPOSONS 83

5.1 Problem Description and Related Work 85

5.2 Notation 89

5.3 Our Approach 89

5.3.1 The Sequential Algorithm 90

5.3.2 Parallelization 96

5.3.3 Software Availability 97

5.4 Results 97

5.4.1 Quality Validation 97

5.4.2 Performance Results . 101

5.4.3 A Large-Scale Application . 102

www.manaraa.com

vi

5.5 Discussion 103

5.6 Concluding Remarks 104

CHAPTER 6. SCAFFOLDING GENOMIC CONTIGS USING LTR RETRO-

TRANSP OSONS 105

6.1 Retroscaffolding 108

6.2 Proof of Concept of Retroscaffolding Ill

6.3 A Framework for Retro-linking 115

6.3.1 Building a Database of LTR Pairs . . 115

6.3.2 An Algorithm to Establish Retro-links 117

6.4 Scaffolding with Clone Mates and Retro-links 119

6.5 Discussion 121

6.6 Concluding Remarks 123

CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 124

BIBLIOGRAPHY 127

;

www.manaraa.com

vii

LIST OF TABLES

Table 3.1 Summary of various previously developed fragment assemblers and EST

clustering methodologies. PaCE is our methodology. 37

Table 3.2 (a) Run-times (in minutes) of assembly programs on an arbitrary mouse

EST collection downloaded from GenBank. 'X' denotes that 2 GB

memory was not sufficient for the program to complete, (b) Pairwise

overlaps stored by CAP3 39

Table 3.3 Run-time scaling of PCAP on 322,000 gene-enriched maize fragments.

"X" denotes that the program was hung performing I/O operation. . 41

Table 4.1 Quality assessment of PaCE and CAP3 clusters using clusters generated

from different portions of the benchmark data set 69

Table 4.2 Quality assessment of PaCE clusters with and without clone mates

(CM) information, against the Arabidopsis benchmark clusters 70

Table 4.3 Time (in seconds) spent in various components of parallel EST cluster­

ing as a function of the number of processors (p) for 20,000 ESTs. . . 72

Table 4.4 PaCE clustering run-time (in minutes) on «3.78 million mouse ESTs

using 1,024 IBM BlueGene/L processors 75

Table 4.5 Phase-wise run-time (in minutes) of PaCE clustering on «3.78 million

mouse ESTs using 1,024 IBM BlueGene/L processors 75

Table 4.6 Maize genomic fragment data types and size statistics: Methyl-filtrated

(MF), High-Cot (HC), Bacterial Artificial Chromosome (BAC) derived,

and Whole Genome Shotgun (WGS) 78

www.manaraa.com

viii

Table 5.1 Confidence levels for different scenarios depending on the presence or

absence of TSDs and motifs 96

Table 5.2 Parameter set for our program with default values 97

Table 5.3 Quality validation of running LTR.par and LTRSTRUC programs on

the entire yeast genome 98

Table 5.4 Run-time results of LTR_par on different genomes 101

Table 5.5 Parallel run-times (in seconds) of LTR-par on the yeast genome and the

chromosome 3R of Drosophila. 102

Table 6.1 LTR-par parameter settings. Ill

Table 6.2 Summary of the LTR retrotransposons identified in 4 maize BACs using

LTR.par 112

Table 6.3 Classification of the LTR pairs in 4 BACs, with respect to a set of 10

shotgun samples obtained from each BAC at different coverages. . . . 113

Table 6.4 Number of retro-gaps vs. all sequencing gaps. Measurements are aver­

aged over all 10 samples of each of the two BACs 114

Table 6.5 Summary of LTR pairs predicted by LTR.par 116

Table 6.6 Results of (i) scaffolding contig data for BAC4 (136,932 bp) using clone

mate information, (ii) retroscaffolding, and (iii) combined scaffolding

using both clone mate and retro-link information 120

www.manaraa.com

ix

LIST OF FIGURES

Figure 2.1 Illustration of transcription and translation — the biological mecha­

nisms that produce protein molecules from the genetic code encoded in

genes 8

Figure 2.2 Illustration of the EST sequencing procedure 11

Figure 3.1 Non-uniform sampling of mRNA resulting from the EST sequencing

procedure 24

Figure 3.2 Overlap layout suggesting a case of a (a) sequencing error, and (b)

natural variation 26

Figure 3.3 Illustration of the context of clustering in whole genome sequencing

projects. Clustering F would partition it into two clusters, one corre­

sponding to G\, and another to Og 27

Figure 3.4 Number of overlaps stored by the CAP3 program while clustering dif­

ferent subsets of a rat EST data set. The peak memory usage reached

2 GB for 150,000 ESTs 40

Figure 4.1 Examples to show the effect of transitive closure clustering in the con­

text of genome assembly. 44

Figure 4.2 A naive serial clustering algorithm. The worst-case run-time and space

complexities of the algorithm are 0(n2 x I 2) and 0 { n x I) , respectively. 45

Figure 4.3 Algorithm 1 improved by the promising pairs, clustering and pair gen­

eration heuristics 49

www.manaraa.com

X

Figure 4.4 Examples showing two cases of maximal matches, (a) A match a is

maximal in two pairs of locations (i,j) and (i,k) between si and ag- (b)

Two maximal matches a and 7 exist between S3 and S4 50

Figure 4.5 Algorithm for generating promising pairs from a generalized suffix tree. 53

Figure 4.6 Our sequence clustering algorithm. Steps 1 and 2 are collectively called

the "preprocessing phase" and the remainder of the algorithm is called

"clustering phase" 54

Figure 4.7 (a) Dynamic programming table showing the computation of an align­

ment between s and s' anchored on a maximal match a. (b) Overlap

patterns resulting from suffix-prefix alignment computation and their

corresponding paths in the table 57

Figure 4.8 Organization of the PaCE software 58

Figure 4.9 A single master-multiple workers design for detecting overlaps and clus­

tering in parallel, with responsibilities designated as shown. Arrows

indicate the direction of communication 62

Figure 4.10 The algorithm for the master processor. Bold font indicates a commu­

nication step 64

Figure 4.11 The algorithm for each worker processor. Bold font indicates a commu­

nication step 65

Figure 4.12 Illustration of quality validation measurements True Positives (TP),

True Negatives (TN), False Positives (FP) and False Negatives (FN).

'U' refers to the set of all possible pairs of the input ESTs 68

Figure 4.13 Parallel scaling of PaCE clustering 71

Figure 4.14 (a) Promising pair generation and alignment statistics of PaCE, as a

function of data size, (b) The number of clusters as a function of the

cluster size for 168,200 ESTs 73

Figure 4.15 PaCE run-time as a function of the number of pairs allocated at a time

for pairwise alignment 74

www.manaraa.com

XI

Figure 4.16 Number of promising pairs generated vs. number of pairs aligned by

PaCE while clustering «3.78 million mouse ESTs 76

Figure 4.17 Idle run-time characteristics of PaCE clustering of the mouse EST data.

(a) Average percentage idle time for each worker processor, (b) Per­

centage idle time of the master processor 77

Figure 4.18 Illustration of our cluster-then-assemble framework 79

Figure 4.19 Parallel run-times for constructing GST on inputs of sizes: (a) 250

million, and (b) 500 million bp 80

Figure 4.20 (a) Total parallel run-time for the entire clustering algorithm excluding

that of GST construction, (b) The number of pairs generated, aligned,

and accepted as a function of input size 81

Figure 5.1 The structure of a full-length LTR retrotransposon 85

Figure 5.2 Illustration of the process of creating a bucket Bk during preprocessing. 91

F i g u r e 5 . 3 A l g o r i t h m t o g e n e r a t e c a n d i d a t e p a i r s f r o m a g i v e n b u c k e t 9 2

Figure 5.4 Illustration of the candidate pair generation algorithm 93

Figure 5.5 Two alignments are performed for each candidate pair si vs. S3

and S2 vs. S4. Dotted arrows indicate the directions of the alignments,

and the two ovals indicate the anchoring match 94

Figure 5.6 A case of nested retrotransposons in chromosome 10 of S. cerevisiae

with 3 LTRs. The bottom-most line indicates the genome (not to scale).

Part (a) shows the benchmark co-ordinates for the LTRs. Parts (b) and

(c) show the two LTR_par predictions 100

, Figure 6.1 An example showing 6 pairs of clone mate fragments (shown connected

in dotted lines) sequenced from a given BAC. The relative order and

orientation between contigs c\ and c% (also, between C3 and C4) can be

inferred from the clone mates 106

www.manaraa.com

xii

Figure 6.2 (a) Structure of a full-length LTR retrotransposon. (b) An example

showing two contigs c\ and C2 with a retro-link between them 109

Figure 6.3 Classification of LTR pairs based on the location of sequencing gaps,

LTRs, and contigs. Dotted lines denote sequencing gaps. Retro-links

correspond to the class CgC . 113

Figure 6.4 Validation of two retro-links — between contigs cio and cie, and contigs

C41 and C24. Vertically aligned ovals denote overlapping regions, and

squares denote retrotransposon hit through tblastx against the GenBank

nr database 119

www.manaraa.com

xiii

ACKNO WLED CEMENTS

First and foremost, I would like to thank my major adviser, Prof. Srinivas Aluru, for

guiding and inspiring me through out my graduate study. His ability to think quickly, clearly,

critically, and creatively is just one of the several wonderful qualities that I admire and would

like to emulate in the rest of my career. He has kept me focused through out, made me question

myself at critical times, and helped me set a wonderful platform to start my research career.

My sincere -thanks to Prof. Volker Brendel, Prof. Suraj C. Kothari, Prof. Patrick S.

Schnable and Prof. Srikanta Tirthapura for serving in my committee. I am grateful to Prof.

Brendel and Prof. Schnable for working with me on various projects, and for providing me a

research experience to cherish and take to the next stage of my career. I thank Prof. Kothari

for his involvement that was key for success and for the encouragement he provided from time

to time. I am thankful to both Prof. Fernandez-Baca and Prof. Tirthapura for serving as

mentors and sharing their experiences in building a research career. Special thanks to Prof.

Manimaran Govindarasu and Prof. Tirthapura for advising me at critical times of my graduate

study.

I thank the following researchers for serving as my mentor during my industry internships:

Dr. Mark Whitsitt in Pioneer Hi-Bred International Inc., Mr. Sam Ellis and Mr. Kurt

Pinnow in IBM Rochester, and Dr. Robert S. Germain and Dr. Frank Suits in IBM T.J.

Watson Research Center. Special thanks to Mr. Brian Smith, Ms. Nalini Polavarapu, Dr.

Xiaowu Gai, Dr. Yan Fu and Prof. Daniel Voytas for collaborations and comments.

This research was supported by NSF grants primarily by ACI-0203782, and in part by

CCR-009628 and DBI-0527192. My graduate study at Iowa State University was supported

in parts by a Pioneer Hi-Bred Graduate Research Fellowship from January to December 2003,

www.manaraa.com

xiv

and by an IBM Ph.D. Fellowship from August 2004 through May 2006.

It has been wonderful interacting with all the past and present members of my research

group: Natsuhiko Futamura, Bhanu Hariharan, Mahesh Narayanan, Scott Emrich, Pang Ko,

Sudip K. Seal, Sarah Orley, Srikanth Komarina, Benjamin Jackson, Yogy Namara, Xiao Yang,

Abhinav Sarje and Chad Brewbaker. Special thanks to Scott Emrich for engaging in several

active collaborations and for useful comments and discussions.

My friends at Iowa State University have been an immense source of energy and enthusiasm.

Without them my life as a graduate student would have been uninteresting, to say the least.

www.manaraa.com

XV

ABSTRACT

Computational genomics is the study of the composition, structure, and function of genetic

material in living organisms through computational means. The focus of research in compu­

tational genomics over the past two decades has primarily been the understanding of genomes

and their numerous functional elements through the analysis of biological sequence data. The

explosive growth in sequence data coupled with the design and deployment of increasingly

high throughput sequencing technologies has created a need for methods capable of process­

ing large-scale sequence data in a time and cost effective manner. In this dissertation, we

address this need through the development of faster algorithms, space-efficient methods, and

high-performance parallel computing techniques in the context of some key problems involving

large-scale sequence analysis.

The first problem we address is the clustering of large collections of DNA sequences based

on a measure of sequence similarity. Let n denote the number of input sequences, and I

denote the average length of a sequence. We developed a new sequence clustering framework

with the following novel features: (i) a space-efficient algorithm to limit the worst-case space

complexity to 0(nxZ), in contrast to the 0(n2 + nxl) space required by most of the previously

developed approaches; (ii) an algorithm to identify pairs of sequences containing long maximal

matches, that generates these pairs on-demand in the decreasing order of their maximal match

lengths in 0(n x I + number of pairs) run-time; (iii) a combination of algorithmic heuristics

to significantly reduce the number of pairs evaluated for checking sequence similarity while

maintaining the quality of clustering; and (iv) parallel strategies that provide linear speedup

and a proportionate reduction in space per processor to facilitate large-scale clustering. We

applied our clustering approach in the context of two biological applications — clustering

Expressed Sequence Tags (ESTs), and genome assembly. The results demonstrate that our

www.manaraa.com

xvi

approach has significantly enhanced the problem size reach while also drastically reducing the

time to solution. To the best of our knowledge, this is the first parallel solution to scale with

a linear speedup on thousands of processors. We implemented our algorithm into a software

program called PaCE.

Identical or highly similar copies of the same sequence can be present in numerous locations

of a genome. Such sequences are called repeats. The next problem we address is the de novo

detection of repeats called LTR retrotransposons. Given a genome of length n, our algorithm

to detect LTR retrotransposons has the following characteristics: (i) a space complexity of

0(n); (ii) a method to produce high quality candidates for prediction in 0(n + number of

candidates) run-time; and (iii) a thorough evaluation of each candidate to ensure high quality

prediction. Validation of our approach on the yeast genome demonstrates both superior quality

and performance results when compared to existing software. We implemented our algorithm

into a software program called LTR-par, which can be run on both serial and parallel computers.

In a genome assembly project, the fragments experimentally sequenced from a target

genome are computationally assembled into "contigs" that represent the various contiguous

genomic stretches from which the fragments were sampled. The next task is called scaffolding

which is to order these contigs along the target genome. In this dissertation, we introduce a

new problem called retroscaffolding for ordering contigs based on the knowledge of their LTR

retrotransposon content and present an algorithm to achieve the same. Through identification

of sequencing gaps that span LTR retrotransposons, retroscaffolding provides a mechanism for

prioritizing sequencing gaps for finishing purposes. Our solution for retroscaffolding combines

the techniques in PaCE for detecting pairs of similar sequences and the techniques in LTR_par

for detecting LTR retrotransposons.

While many of the problems addressed in this dissertation have been studied previously,

the main contribution in this dissertation is the development of methods that can scale to the

largest available sequence data collections. As an illustration, we clustered the mouse EST

collection in GenBank, which is the second largest available EST collection with «3.78 million

ESTs, in just under 10 hours using 1,024 processors of an IBM BlueGene/L supercomputer.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

DNA or Deoxyribonucleic Acid is one of the fundamental molecular entities inside a cell

of a living organism. DNA encodes the genetic instructions for a cell to carry out its cellular

development, and is also the hereditary material of an organism. An eukaryotic cell contains

DNA molecules both inside its nucleus (as chromosomes), and outside (as mitochondrial and

chloroplast DNA). All cells in an organism contain copies of the same set of DNA molecules.

The term genome is used to collectively refer to all the DNA molecules within a cell. For

example, the human genome consists of 23 pairs of chromosomes and a mitochondrial DNA.

Along a genome are various segments called genes that encode for proteins and Ribonucleic

Acids (or RNAs) that carry out designated cellular functions. Transcription is a biological

process by which portions of a gene is copied into an RNA molecule. These RNA molecules

are subsequently released into the cytoplasm of the cell, where they are translated into their

corresponding protein molecules.

A DNA molecule contains two strands intertwined in the form of a double helix. Each

strand has molecules bonded to one another as a chain or sequence of four nucleotides: Adenine,

Cytosine, Guanine and Thymine, abbreviated as A, C, G, and T. Nucleotides are also referred

to as bases. The nucleotides along the two strands are linked to one another by a complementary

relationship: A T and C O G\ therefore, the sequence of one strand can be inferred from

the sequence of the other. For this reason, the sequence length of a DNA molecule is typically

measured in base pairs (bp). In contrast to a DNA molecule, an RNA molecule is single

stranded and contains Uracil (U) instead of Thymine.

The process of determining the sequence of a DNA molecule is called sequencing. While

the structure of a DNA molecule was discovered in the early 1950s, it was not until 1975

www.manaraa.com

2

that the first experimental procedure to sequence a DNA molecule was designed [Sanger and

Coulson (1975)]. This invention marked the beginning of a new era in molecular biology

research. Rapid advancement in high-throughput cost-effective sequencing technologies led to

tremendous growth in sequence repositories. With it arose a need for developing computational

methods and automated tools for analyzing these sequence databases.

For more than two decades now, biological sequence analysis has been in forefront of molec­

ular biology research, providing vital headways into the fundamental understanding of cellular

mechanisms and significantly accelerating the process of molecular level discovery in modern

biology. Within a span of only two decades, numerous genomes from a wide range of organisms

from viruses to microbes to more complex mammalian species including the human have been

sequenced and deciphered. Genes in the genomes of various species are being discovered and

cataloged in databases along with corresponding functional and structural annotation; in many

cases such projects are undertaken much earlier to the sequencing of the underlying genomes.

Understanding the structural and functional roles of several other genomic entities such as

regulatory elements and repeats is also of current interest.

The key to the recent accomplishments in molecular biology research is the interdisciplinary

alliance that is prevailing between biologists and computer scientists. Biologists generate ex­

perimental data and pose questions of interest. Computer scientists design algorithms and

software suites for efficiently processing these data and producing biologically meaningful re­

sults. The outcomes from such concerted efforts have impacted the research conducted in both

communities. The hardness of many of the biological problems have opened new venues for

computer scientists to collaborate and participate, while the outcome of their efforts have recip­

rocated to the biologists in the form of automated suites and tools for biologists, accelerating

biological discovery.

In this dissertation, we focus on problems in genomics that involve sequence analysis,

especially those for which there is a compelling need for high performance computing solutions

capable of analyzing large-scale data. Designing computational solutions for analyzing sequence

databases is challenging because of various factors:

www.manaraa.com

3

• Large-scale data: High-throughput sequencing has facilitated quick generation of bi­

ological sequences, leading to an exponential growth in many publicly available sequence

databanks. Handling large-scale data imposes heavy memory and run-time requirements.

• Sequence variations: Sequences generated through experiments may contain errors.

For example, a nucleotide may either be mis-read or missed. During analysis, it is essen­

tial for ensuring quality to have a capability that can both identify such sequencing errors

and differentiate them from sequence variations induced by natural mutation events.

• Experimental costs: The costs associated with sequencing experiments have signifi­

cantly reduced with the advancements in the underlying technologies. For instance, the

cost of sequencing a DNA molecule reduced from over $10 per finished base in the early

1990s, to less than 10<: per base in the early 2000s, and recently to under a tenth of a

cent per base in 2005. It is still, however, substantially expensive to carry out genome

scale sequencing projects [Pennisi (2005)]. Given that most experimental effort is spent

in generating data that can provide information that is sufficient to their subsequent

computational analysis, it is important that computational methods are designed with

a goal of extracting as much information as possible from as little experimental data.

Moreover, if computational methods can provide an insight into the information content

of the data, such insights can serve as feedback to help biologists reduce experimental

costs without compromising on quality.

• Computational requirements: Many problems that involve sequence analysis are

computationally hard, necessitating polynomial time approximation algorithms. Even

such solutions, however, often require large run-time and memory requirements for large-

scale input sizes.

Traditionally, most of the algorithms and software programs developed for analyzing se­

quence databases have been design-intended for serial computers. The complexities of problem

instances aggravated by the factors mentioned above, however, have made it increasingly diffi­

cult for a continued deployment of such methods. Quick-fix solutions that run a serial code on

www.manaraa.com

4

a high-end computer with tens of gigabytes of shared memory have been developed to alleviate

this situation. Concurrent with these developments in computational genomics research, the

supercomputing technologies have also experienced a phenomenal growth. Processing capabil­

ities that can support thousands to tens of thousands of CPUs, with access to thousands of

gigabytes of memory are now available in the form of distributed memory machines. Given the

high complexities involved in analyzing large-scale sequence databases, these large-scale super­

computers can provide an excellent platform for carrying out research. The key challenge is

therefore on the algorithm designers to design methods that can efficiently exploit the memory

and compute power to produce high quality biologically meaningful results.

The contributions in this dissertation are as follows:

» Scalable clustering framework: We focus on problems for making sequence level

discovery of genomic and genie data. In particular, we address two important problems:

Expressed Sequence Tag (EST) clustering and genome assembly. The problems can be

directly applied to various genome level and gene related studies such as gene discovery,

gene structural and functional annotation, alternative splicing studies, and gene expres­

sion profiling.

We formulate the compute intensive phases of these problems as a sequence clustering

problem that involves computation of pairwise sequence overlaps. We then provide a

space and time efficient parallel algorithm for distributed memory parallel computers

[Kalyanaraman et al. (2003a,b, 2006b)]. We demonstrate the utility of our algorithm by

clustering large EST collections and applying our clustering framework in the on-going

efforts to assemble the maize genome. This research has enabled the clustering of millions

of genomic and EST sequences in matters of hours without compromising on quality. It

is also the first method that has demonstrated a linear scaling to over thousands of

processors. Our clustering framework provides a generic and efficient solution to any

sequence analysis problem that can in principle, be solved by computing the overlap

between each sequence in the input to every other sequence.

• LTR retrotransposon identification:

www.manaraa.com

5

Long Terminal Repeat (LTR) retrotransposons constitute one of the most abundant

classes of repetitive elements in several eukaryotic genomes. Detection of these repeti­

tive elements require methods that can analyze genome-scale data. We developed a new

algorithm for detecting genomic regions that contain the structural characteristics of a

full-length LTR retrotransposons [Kalyanaraman and Aluru (2005b, 2006)]. The factors

that distinguish our algorithm from other contemporary approaches are as follows: (i)

a novel method to preprocess the entire genome sequence in linear time and produce

higher quality "candidates" in constant time per candidate, (ii) a thorough evaluation

of each candidate in order to ensure a high quality prediction, (iii) a robust parameter

set encompassing both structural constraints and quality controls provided by the users

with a high degree of flexibility, and (iv) serial and parallel software programs implement­

ing our algorithm. Our validations conducted on the yeast genome show both superior

quality and run-time when compared to other software. Performance studies on many

large genomes such as that of Arabidopsis («119 million bp), Drosophila («118 million

bp), and Chimpanzee («3 billion bp) also show multi-fold speedups over contemporary

software.

• Scaffolding using LTR retrotransposons:

The presence of repeats in genomes has been traditionally viewed as a source of compli­

cation while assembling genomes. We introduce a problem called retroscaffolding [Kalya­

naraman et al. (2006a)] that, on the contrary, can benefit from the abundance of LTR

retrotransposons. Retroscaffolding is a new variant of the well-known problem of scaf­

folding, which is aimed at determining the order of the sequences output by a genome

assembly program along a target genome. Scaffolding is the last computational step, af­

ter which the genome sequence is "finished" through experimental means. The retroscaf­

folding approach is not meant to supplant but rather to complement other scaffolding

approaches. There are two more advantages in retroscaffolding: (i) it allows detection of

regions containing LTR retrotransposons within the unfinished portions of a genome and

can therefore guide the process of finishing, and (ii) it provides a mechanism to lower se-

www.manaraa.com

6

quencing costs without impacting the quality of the assembled portions containing genes.

Sequencing and finishing costs dominate the expenditures in whole genome projects, and

it is often desired in the interest of saving cost to reduce such efforts spent on repeat

regions of a genome. The retroscaffolding technique provides a viable mechanism to this

effect.

The dissertation is organized as follows. Chapter 2 provides a brief overview on the biolog­

ical concepts and terminology required to understand the problems and applications described

in this dissertation. We also outline popular sequence overlap computation methods. In Chap­

ter 3, we formulate the problems of EST clustering and genome assembly as problems involving

sequence clustering. We then provide an extensive review of literature describing the various

computational methods previously developed for these two problems. In Chapter 4, we describe

our parallel clustering algorithm, and report the results we achieved in two main applications:

clustering various large-scale EST data collections including 3.7 million mouse ESTs, and clus­

tering 1.6 million maize genomic fragments as part of the on-going maize genome sequencing

initiative. The platform used for our experiments is a 1,024 node IBM BlueGene/L super­

computer at Iowa State University. In Chapter 5, we describe the algorithms and software we

developed for de novo identification of LTR retrotransposons. In Chapter 6, we introduce the

retroscaffolding problem, describe our algorithm, and demonstrate its utility on maize genomic

data. Chapter 7 concludes the dissertation with a discussion on future research directions.

www.manaraa.com

7

CHAPTER 2. SEQUENCE ANALYSIS: BIOLOGICAL BACKGROUND

AND TERMINOLOGY

The genome of an organism is the collection of all DNA molecules in a cell of a living

organism. Genes are portions within a genome that encode for proteins and RNA molecules

that axe responsible for various functions in cellular development. Genes could be part of either

strand of the genomic DNA. An eukaryotic gene can be viewed as a sequence of alternative

segments called exons and introns. The biological mechanism that leads to the production of

proteins in an eukaryotic genome is illustrated in Figure 2.1, and can be described as follows.

In the first stage called transcription, a copy of the gene is made into a preliminary RNA

molecule called the pre-mRNA. Once this single stranded pre-mRNA is released into the nu­

cleus, a splicing mechanism splices the exons by removing the intervening introns and creates

a corresponding RNA molecule called the messenger RNA or (mRNA). The combination of

exons selected during transcription need not be unique: different transcription events of the

same gene could use different combinations of exons (and sometime even introns). This phe­

nomenon, called alternative splicing, provides the capability for a gene to code for more than

one mRNA molecule (and thereby multiple protein products). Once transcribed, the mRNA

molecule, also called an mRNA transcrpt, is released into the cytoplasm of the cell. The overall

process of a gene transcribing for an mRNA molecule is also referred to as gene expression.

The number of mRNAs transcribed from a gene indicates its expression level under a set of

provided conditions.

In the next stage, called translation, the mRNA molecule binds itself to a molecular com­

plex, and the sequence is translated into a corresponding protein molecule; the translation

reads the mRNA sequence in blocks of three nucleotides, where each three-letter sequence

www.manaraa.com

8

genomic
5'

<
1 gene =5».

1 3'

. (\ Z N (

9'
1 I
1

) V) I J I) 1
1

exon i exon'2 exonz exori4

pre-mRNA Ë_ €
exon i

-e- -e—e 3-
3'

exori2 exon?, exon4

mRNA t XZXHX 3

(mRNA released from
nucleus to cytoplasm

mRNA AUGCAGUGUUGG...

protein MetGinCpsTrp.

Transcription

Translation

Figure 2.1 Illustration of transcription and translation — the biological
mechanisms that produce protein molecules from the genetic
code encoded in genes.

called a codon translates into one of 20 amino acids. The mapping from codons to amino

acids is referred to as the genetic code, which is almost universal across organisms. It is now

known that not all genes transcribe for protein-coding mRNAs. Such genes are labelled pseu-

dogenes because of a lack of protein product. Nevertheless, it is also sometimes possible that

a protein-coding mRNA is not successfully translated into its corresponding protein product.

2.1 Genomic Repeats

Identical or approximately identical copies of a subsequence could be present in multiple

locations of a genome. These subsequences are called repeats. There are numerous types of

repeats, and one of the most abundant type of repeats are the transposons.

www.manaraa.com

9

2.1.1 Transposons

Transposition is a process by which a sequence of DNA can move to or copy itself at

different positions within the genome. The DNA sequences that transpose themselves are

called transposons. Based on the mechanism of transposition, there are two main types of

DNA transposons. The first class of transposons are those that can cut themselves from

their current genomic location and then insert themselves into another. These are simply

referred to as DNA transposons. The second class of transposons make a copy of themselves

into an intermediate RNA molecule, which is then reverse transcribed and inserted as a DNA

molecule into another genomic location. Because this transposition mechanism is similar to

that in retroviruses, these transposons are called retrotransposons. There are several subclasses

of retrotransposons.

• LTR Retrotransposons: These retrotransposons are characterized by two long ter­

minal repeats, and are therefore called Long Terminal Repeat (or LTR) retrotransposons.

• Non-LTR Retrotransposons: These include different subclasses of retrotransposons

such as long interspersed elements (LINEs), short interspersed elements (SINEs), and

Alu sequences.

2.2 Sequencing Technologies

Sequencing is the process of determining the chain of nucleotides in a DNA or RNA

molecule, or the chain of amino acids in a protein molecule. In 1975, Sanger and Coulson

[Sanger and Coulson (1975)] designed the first method to sequence DNA molecules and called

it a "plus and minus" method. Two years later, Sanger et al. designed another method called

the chain termination method [Sanger et al. (1977)] similar to the plus and minus method.

Currently, almost all sequencing methods are based on the chain termination method. Since

its invention, significant technological advancements have been made towards increasing the

throughput and accuracy, and towards reducing the cost per base of sequencing.

www.manaraa.com

10

With current methods for DNA sequencing, it is possible to sequence «500-1000 bp nu­

cleotides at a stretch with an accuracy of 98-99%, implying a maximum sequencing error rate

of 1-2%. However in reality, biological molecules are much longer — genomes span a few

tens of thousands to even billions of nucleotides; a gene may span thousands to a few tens

of thousands of nucleotides; and a protein can span hundreds of amino acids. To extend the

reach of sequencing a target molecule's full length, technologies adopt the following strategy of

sequencing randomly chosen "fragments" from many copies of the molecule, and subsequently

relying on computational means to group or assemble the target molecule.

In this section, we will briefly review the different sequencing technologies and the types of

sequences that can be generated from them.

2.2.1 Expressed Sequence Tag Sequencing

Expressed Sequence Tags (ESTs) are sequences obtained from mRNA libraries. ESTs are

sequenced as follows (illustrated in Figure 2.2): Depending on the conditions a living tissue is

subjected, different genes in the tissue could express at different levels. The mRNA molecules

transcribed during an experiment are extracted and isolated [Chomczynski and Sacchi (1987)].

Subsequently, the isolated mRNA molecules are subjected to reaction with an enzyme called

reverse transcriptase. This converts the mRNA to its double stranded DNA counterpart (i.e.,

with an added complementary strand and with U replaced by T) called the complementary

DNA (or cDNA) molecule. Due to underlying experimental limitations, however, this proce­

dure may not complete on the entire mRNA thereby resulting in partial length cDNAs. In

order to provide sufficient coverage over the entire mRNA, multiple and possibly redundant

such partial length cDNAs can be generated and each cloned using a cloning vector. Using

primers targeted for known vector sequences near the ends of the inserts, the nucleotide se­

quence of each inserted clone can then be read over a single pass from either end, resulting in

fragments called ESTs that are about 500 bp long. Because this procedure may oversample the

end regions of a cDNA clone, the untranslated regions at the ends of the corresponding mRNA

may also get proportionately over-represented. If it is desirable to avoid such bias, sequencing

www.manaraa.com

11

5' 3'
mRNA —————————AAAAAAA

(polyA tail)
-e=

(Reverse transcriptase action)

Partial length

cDNAs

cDNA insert

Single pass sequencing using end-primers

3' EST 5' EST

Bacterial Cloning Vector

Figure 2.2 Illustration of the EST sequencing procedure.

is started from random locations on the cDNA insert using randomly created sequences as

primers, or through application of restriction enzymes, breaking the cDNA insert before its

shreds are sequenced from their ends.

Cost-effective high throughput sequencing of ESTs has largely been facilitated by the sim­

plicity of the single pass sequencing technology. Nevertheless, the technology does not always

generate accurate sequences. Nucleotides are sometimes misread or ambiguously interpreted

resulting in low-quality sequences. It is also possible, although rare, that two cDNA sequences

representing two distinct mRNA sequences are spliced together resulting in an artifact known

as a chimeric cDNA. When cloned and sequenced, the resulting ESTs could contain portions

from either cDNA, potentially confounding their subsequent analysis.

During sequencing, the two ESTs that originate from the ends of a cDNA insert are some­

times tagged with the clone identifier and stored in the header of the EST sequences in the

database. This auxiliary information proves valuable in later stages of the sequence analysis —

www.manaraa.com

12

pairs of ESTs having the same clone identifier are labeled clone mate pairs (or clone pairs) and

are immediately associated with a common source transcript, obviating the need to compute

additional evidence to establish their relationship. Mate pair information is not unique to EST

sequencing; it is also common in genome sequencing techniques that involve sequencing from a

clone insert. Also available sometimes with EST sequence data are "trace data" that contain

the quality values for each base position of the ESTs. Such trace data are measures of sequence

quality and are valuable during analysis.

Genes express differentially depending on the tissue they reside and the subjected experi­

mental conditions. Consequently, EST data generated by conventional sequencing techniques

have ESTs from overly expressed genes in a proportionately higher concentration than from

sparsely expressed genes. Such non-uniformity may be desirable if the ESTs are used in gene

expression related studies; otherwise, not only is the effort spent in sequencing multiple ESTs

covering the same regions unnecessary, but such non-uniformity may also add significant chal­

lenges to the computational methods for EST analysis. For example, one unique EST per

gene is sufficient for estimating the number of genes in an organism, while oversampling may

significantly increase the computation as a function of the number of ESTs represented per

gene. To alleviate this problem, many variations to the original sequencing technique have

been invented and these methods can be classified into two groups: normalization and sub-

tractive hybridization. Normalization achieves a balance in the cDNA population within a

cDNA library [Patanjali et al. (1991); Scares et al. (1994)], while subtractive hybridization

reduces overly represented cDNA population by selectively removing sequences shared across

cDNA libraries [Duguid and Dinauer (1990); Fargnoli et al. (1990); Schmid and Girou (1987);

Schweinfest et al. (1990); Travis and Sutcliffe (1988)]. For a survey of these two methods see

[Baldo et al. (1996)].

www.manaraa.com

13

2.2.2 Whole Genome Sequencing

2.2.2.1 Whole Genome Shotgun Sequencing

One of the most popular ways to sequence an entire genome is whole genome shotgun

(WGS) sequencing, first used to sequence the genome of bacteriophage A [Sanger et al. (1982)].

In this method, random locations of a target genome are sampled by a shotgun approach, and

short sequences («5,000 bp) starting at these locations are extracted. The short sequences are

then cloned in bacterial vector colonies, and are sequenced from both sides from each vector.

The resulting sequences are of length «500-1,000 bp and are called shotgun fragments.

In WGS sequencing, a target genome can be sampled such that each of its base can be

expected to be covered by a specified number of fragments. This number is called sequencing

coverage and is denoted by 'X'. The number of fragments sequenced in a WGS project is a

function of the length of the target genome and the desired sequencing coverage. For example,

a 6X coverage of a 3 billion bp genome will result in approximately 36 million fragments,

assuming an average length of 500 bp for each fragment. Given the randomness of the shotgun

procedure, however, it cannot be guaranteed that each base will be covered by at least one

fragment. In practice, significantly long stretches of genome are left uncovered in sequencing,

and each of these stretches is called a sequencing gap. Specifying a high coverage decreases the

frequency and lengths of such gaps, although at a proportionately higher sequencing cost.

In general, whole genome shotgun sequencing is relatively cheaper when compared to other

sequencing technologies because the locations to sequence are chosen at random. The approach

has been used for sequencing a number of genomes including the human genome [Adams et al.

(2000); Venter et al. (2001a,b, 2004)].

2.2.2.2 Hierarchical Sequencing

An alternative methodology to whole genome shotgun sequencing is hierarchical sequenc­

ing. In this approach, a .genome is first broken into numerous smaller clones of size up to 200

kbp each called a Bacterial Artificial Chromosome (or BAC). Next, a combination of these

BACs that provide a minimum tiling path based on their locations along the genome is deter­

www.manaraa.com

14

mined. Each selected BAC is then individually sequenced using a shotgun approach generating

numerous short («500-1,000 bp long) shotgun fragments. This method is also called BAC-by-

BAC sequencing or clone-by-clone sequencing because of its hierarchical strategy. Even though

the associated costs of creating BAC colonies makes this a costlier alternative to whole genome

shotgun sequencing, this method provides additional information that facilitate an accurate

analysis of the fragments. Hierarchical methods similar to BAC-by-BAC sequencing involve

different types of colonies such as Yeast Artificial Chromosomes and Fosmids. The BAC-by-

BAC approach has been used for sequencing several complex eukaryotic genomes including

that of the human [Consortium (2001)] and maize [NSF (2005)].

2.2.2.3 Gene-enriched Sequencing

A majority of the genomic DNA content in eukaryotic genomes are repetitive regions and

only a very small portion typically contain genes, e.g., the maize genome is estimated to

contain less than 20% of it in genes. To selectively sample genie portions of the genome dur­

ing sequencing, biologists have developed two gene-enrichment sequencing strategies for plant

genomes: Methyl Filtration (MF) [Rabinowicz et al. (1999)] and High-Cot (HC) sequencing

[Yuan et al. (2003)]. MF sequencing discards genomic portions that are highly methylated,

which are a typical characteristic of repetitive regions. The HC technique isolates low-copy (or

genie) regions of a genome based on hybridization kinetics. These two techniques have been

used to sequence the gene-riched portions of the maize genome [Palmer et al. (2003); Yuan

et al. (2003)],

2.2.3 454 Sequencing

The 454 sequencing is a recently developed sequencing technique [Margulies et al. (2005)]

that uses microfabricated high-density picolitre reactors. While this technique is still at the

early stages of its development, it has attracted the attention of several researchers in genome

sequencing projects primarily because of its superior throughput. However, the average length

of fragments that can be sequenced with current technology is relatively short — only «100

www.manaraa.com

15

bp.

2.3 Pairwise Sequence Alignment Computation

For computational purposes, all biological sequences can be represented as strings over a

finite alphabet — for DNA and RNA sequences the alphabet is 4 characters, and for proteins

it is 20 characters. This property has been taken advantage of in various sequence analysis

problems. The relationship between two sequences is typically established by comparing the

two sequences, and detecting any potential "overlap" between them. Because the sequences

typically represent much smaller pieces of the original source sequence, the presence of overlap

can be used as an evidence to link two sequences without prior knowledge of the underlying

source sequence. For the remainder of the dissertation, we use the terms "sequence" and

"string" interchangeably. Also, we use the term "subsequence" to mean a substring throughout

the remainder of this dissertation except in this section.

The problem of detecting an overlap between two sequences can be formulated as the

problem of computing an "optimal" pairwise sequence alignment. An alignment between two

strings is an ordered list of matches, mismatches, insertions, and deletions between the two

strings. A contiguous stretch in an alignment containing more than one deletion (alternatively,

insertion) is referred to as a "gap". A "score" of an alignment is computed from the number of

its matches, mismatches and gaps. An "optimal alignment" is one with the maximum score.

Modeling biological pairwise sequence overlaps as sequence alignments provides an effective

mechanism to account for sequencing errors and sequence level disagreements arising due to

mutation events.

There are several types of alignments that can be computed between two strings based on

the portions of the two strings considered for alignment scoring. Given two strings, si and %,

of lengths m > 0 and n > 0 respectively:

• Global Alignment: align the whole of si against the whole of [Needleman and

Wunsch (1970)]. this alignment formulation is suited for comparing two highly similar

strings;

www.manaraa.com

16

• Local Alignment: align an arbitrary substring of si against an arbitrary substring of

52 [Smith and Waterman (1981)]; this is suited for detecting local similarities between

two strings;

• Semi-global Alignment: align an arbitrary suffix of si (alternatively, s2) against an

arbitrary prefix of (alternatively, si). Note that the global alignment is a special case

of this alignment if the suffix and prefix are the entire strings. This alignment is also

sometimes called the suffix-prefix or end gaps free alignment by virtue of the fact that

the gaps at either end of an alignment is not penalized (i.e., given a score of 0). The

semi-global alignment is a popular choice in fragment assemblers for detecting pairwise

overlapping fragments;

• Spliced Alignment: align the whole of si (alternatively, S2) against an arbitrary

subsequence of (alternatively, si) [Gelfand et al. (1996); Schlueter et al. (2003); Usuka

et al. (2000)]. This formulation is suited for aligning an EST/cDNA sequence with

genes/genomic regions. The outcome of a spliced alignment can be used to both locate

expressed portions within genes and annotate them with their corresponding expressed

products;

• Syntenic Alignment: align an arbitrary pair of subsequences from either strings

[Delcher et al. (1999); Huang and Chao (2003); Rajko and Aluru (2004)]. This alignment

formulation is appropriate for comparing genomes of two evolutionarily related organisms.

A significant syntenic alignment is a chain of local similarities (representing conserved

genie regions) interspersed by long gaps (representing the long stretches of divergent junk

regions between genes).

Using dynamic programming, computing an optimal global, local, semi-global, spliced and

syntenic alignments take 0(m x n) time, and 0(m + n) space [Hirschberg (1975)]. Alignments

are typically computed using a (m+1) x (n+1) table. Computing a global alignment between a

pair of strings of similar lengths and expected high sequence similarity can be accelerated using

a banded computation technique [Fickett (1984)]. In this technique, the alignment computation

www.manaraa.com

17

starts on the diagonal of the dynamic programming table and progressively expands either side

in a band until it can be guaranteed that no optimal alignment can lie outside the band. The

main idea is to avoid computing the entire table, although it may be necessitated in the worst

case. This banded technique can also be extended for non-global alignments if individual pairs

of local regions that are potentially aligning can be identified through other quicker means.

For the above alignments, alignment scoring could vary depending on the mechanism used

to penalize gaps. A straightforward mechanism is to penalize gaps proportional to their lengths.

Another popular gap function is called the affine gap penalty function [Gotoh (1982)], in which

gaps exceeding a cutoff length are given a constant penalty. Affine gap penalty functions are

generally preferred because they provide a better model for biological events such as mutations

and polymorphisms.

Besides alignment scoring, there are several other ways to measure pairwise sequence simi­

larity [Burke et al. (1999); Ukkonen (1992)]. While computing these measures may not model

the problem accurately for sequence errors and expected patterns in overlaps, these techniques

are usually sought as faster alternatives to alignment based methods. For a survey of alignment

and other sequence similarity measures and methods see [Jackson and Aluru (2005); Gusfield

(1997a); Setubal and Meidanis (1997)].

www.manaraa.com

18

CHAPTER 3. SEQUENCE CLUSTERING: PROBLEMS AND

APPLICATIONS

Broadly, there are three main goals (in that order) in genomics research: (i) discover

the composition and structure of all naturally occurring biological DNA, RNA and protein

molecules, (ii) understand their behavior under different conditions both as an independent

molecular entity and as part of a biomolecular complex system, and (hi) advance the state

of genetic capabilities in medical and agricultural research towards the betterment of an or­

ganism's health and/or productivity. This chapter and the next focus on methods towards

achieving the first goal, which is to be able to determine the composition of molecules. To this

effect, sequence databases are as an immense source of information.

Given the large sizes of sequence databases and the vast diversity in the sources they repre­

sent, a necessary first step in their computational analysis is to identify the several sources they

represent and organize them into several conceptual groups. For example, given a collection

of ESTs sequenced from an organism, identifying the different genes represented among them

provides a finer level insight into the genetic composition of the organism. It is customary to

formulate this group identification task as a sequence clustering problem, with the criteria for

clustering designed to model at best desired biological criteria.

In what follows, we will focus on two problems in clustering DNA sequence databases, and

present their significance through their biologically motivated applications.

www.manaraa.com

19

3.1 Clustering DNA Sequences

3.1.1 Clustering of Expressed Sequence Tags

ESTs represent sequences sampled from expressed portions of genes. Given a collection of

ESTs collected from an experiment, we can ask the following questions:

• Q1 What genes are expressed in the experiment?

• Q2 What are the mRNA transcripts that correspond to the expressed genes?

• Q3 Were any of the genes alternatively spliced during the experiment or relative to their

expression in other experiments?

• Q4 What are the expression levels of genes that are expressed in the experiment?

These are some of the important questions that can be answered by analyzing EST databases,

even without any apriori knowledge on the genes in the underlying organisms including their

count or composition. In other words, analyzing ESTs provide valuable insights into expressed

genes regardless of the availability of the sequence of the underlying genome. EST sequencing

also provides an alternative mechanism to sample gene-rich portions of the genome.

3.1.1.1 Problem Statement

Given an arbitrary collection of ESTs, partition the ESTs into "clusters" such that each

output cluster corresponds to a unique gene (alternatively, mRNA transcript).

3.1.1.2 Applications

• Transcriptome and Gene Discovery: One of the earliest identified merits of EST

data is in discovering genes with expression evidence [Adams et al. (1991); Boguski et al.

(1994)]. A sequencing experiment can trigger the expression of multiple genes in a target

cell/tissue, and so the resulting EST data is a segmented representation of the transcribed

portions of all these expressed genes. Thus, clustering an EST collection is equivalent to

reverse-engineering the process that sequenced the ESTs in the first place, and the set

www.manaraa.com

20

of clusters would correspond to the portion of the transcriptome (or expressed portions

of the genome) represented in the underlying sequence data. However, such EST-to-

source mapping is not readily available and one of the main challenges in clustering is its

inference from other information contained within the sequence data.

Any two ESTs that cover a common segment within their gene source are expected to

show a significant sequence overlap in the corresponding region(s). Therefore, detection of

pairwise overlaps among the EST data can serve as a basis to cluster ESTs. Furthermore,

if it is possible to assemble the ESTs in each cluster consistent to the pairwise assembly,

then the resulting supersequence is likely to correspond to the mRNA transcript that

gave rise to the set of ESTs in that cluster. The UniGene project undertaken by NCBI

is a typical example of clustering ESTs by gene source [Pontius et al. (2003)]; and the

Gene Index project undertaken by The Institute of Genome Research (TIGR) clusters

by transcript source [Quackenbush et al. (2000)].

Given the high costs associated with whole genome projects, the genomes of many or­

ganisms of interest are unlikely to be sequenced. In many cases, biologists still depend

on EST data to help them with building transcriptomes and gene lists. Numerous tran­

scriptome projects have benefited from EST databases in the past [Boguski and Schuler

(1995); Camargo et al. (2001); Carninci et al. (2003); Caron et al. (2001); Okazaki et al.

(2002)]. EST based gene discovery and transcriptome construction projects, however,

are not guaranteed to cover the gene space entirely — i.e., genes that are not transcribed

during sequencing will be missed subsequently by an EST based discovery process. For

example, in Berkeley Drosophila Genome Project, only about 70% of the genes were

covered by the cDNA/EST based gene discovery [Stapleton et al. (2002)].

• Gene Annotation and Alternative Splicing: Once clustered, ESTs within a cluster

can be used to annotate their putative source gene's structure through spliced alignment

techniques [Gelfand et al. (1996); Schlueter et. al. (2003); Usuka et al. (2000)]. Exonic and

intronic boundaries within expressed genes can be marked using the alignment pattern

of a gene sequence with an EST derived from it. EST based gene annotation has been a

www.manaraa.com

21

vibrant research area [Bailey et al. (1998); Bono et al. (2002); Huang et al. (1997); Jiang

and Jacob (1998); Okazaki et al. (2002); Seki et al. (2002); Whitfield et al. (2002); Zhu

et al. (2003)].

As ESTs are derived from mRNAs, they also provide a means to discover alternative

splicing events of the underlying genes [Burke et al. (1998); Kan et al. (2001); Mironov

et al. (1999); Modrek and Lee (2002); Modrek et al. (2001)].

• Alternative Poly-adenylation: Poly-adenylation occurs during transcription and

is the process by which an mRNA sequence is terminated at its 3' end. At the termi­

nated end, the transcription process appends a repeat sequence of the nucleotide adenine

(termed as a "polyA tail"), which plays important roles in the mRNA's stability and

translation initiation. Alternate choice of polyadenylation sites results in corresponding

variations at the mRNA ends and is considered an important post-transcriptional regula­

tory mechanism. ESTs sequenced from the 3' ends of the mRNAs are used to determine

alternate polyadenylation sites in genes [Gautheret et al. (1998)]. ESTs are first clus­

tered and assembled into sequences representing the underlying mRNA transcript. While

assembling, polyA discrepancies are detected in positions having additional evidence of

conserved motifs for polyadenylation sites such as the hexamer A AU AAA, which are

then recorded as possible sites of alternate polyadenylation.

• Gene Expression Studies: Before the advent of the microarray technology, gene

expression and co-regulation related studies were primarily dependent on EST data.

During a sequencing experiment, the number of ESTs derived from an expressed gene is

correlated to its expression level under the experimental conditions. In 1995, a technique

called Serial Analysis of Gene Expression (SAGE) was developed based on the above phi­

losophy [Velculescu et al. (1995)]. For examples of EST based gene expression studies,

see [Ewing et al. (1999); Mao et al. (1998)]. For a review on different approaches to dif­

ferential gene expression studies including EST based analysis, see [Carulli et al. (1999)].

In addition to expression profiling, ESTs are also used to design oligos for microarray

www.manaraa.com

22

chips [Kapros et al. (1994); Zhu and Wang (2000)].

• Single Nucleotide Polymorphisms: Single Nucleotide Polymorphisms (SNPs) are

the most abundant class of genetic variation occurring almost every 1,200 bp along the

human genome. SNPs are studied for mapping complex genetic traits. SNPs that occur

on coding and regulatory sequences could alter the expression pattern or even the tran­

scriptional behavior of the gene. SNPs have also been identified as causes for various

diseases [Collins et al. (1997)]. Such SNPs can be identified as nucleotide variations in

assembled ESTs [Garg et al. (1999); Marth et al. (1999); Picoult-Newberg et al. (1999);

Ye and Parry (2002)]. However, these variations need to be distinguished from those

variations seen among ESTs from paralogous genes, or occurring in ESTs due to se­

quencing errors; otherwise the SNP identification process may result in false predictions.

This is usually accomplished by observing a probabilistic distribution that also takes into

account the quality values of nucleotides in question. A large database of all identified

SNPs is maintained by the NCBI (http://www.ncbi.nlm.nih.gov/projects/SNP/) and is

called dbSNP [Sherry et al. (2001)]. Although a majority of the SNPs in this database are

that of human and mouse, the database is open to SNPs from any species and occurring

anywhere within its genome.

3.1.1.3 Computational Challenges

Overlap Detection

The primary source of information to achieve clustering is the detection of pairwise overlaps

between ESTs. Pairwise overlaps can be detected by computing alignments and the choice of

an appropriate overlap detection scheme is dictated by the goal of clustering. If the goal is

to cluster ESTs based on mRNA source, then a semi-global alignment computation is suited

because it detects suffix-prefix overlap expected out of two ESTs derived from an overlapping

region on the mRNA transcript. However, if clustering by gene source is desired, then in

addition to a suffix-prefix type of alignment there is a need to detect overlaps between ESTs

derived from different alternatively spliced transcripts of the same gene. This can be mod­

http://www.ncbi.nlm.nih.gov/projects/SNP/

www.manaraa.com

23

eled as finding a consistent chain of local alignments (better known as a syntenic alignment)

corresponding to the regions containing shared exons.

A naive approach to clustering is to first choose the overlap detection scheme, run it on

each pair of input sequences, and in the process form the clusters using only those pairs with

a significant overlap. The main issue with this approach is that its scalability is limited by

the quadratic increase in the number of pairs. This can be further aggravated by the high

computation cost associated with detecting each overlap — the run-time for aligning two

sequences through a standard dynamic programming approach is proportional to the product

of their lengths.

Thus, a primary challenge in designing clustering algorithms is to be able to significantly

reduce the run-time spent in detecting overlaps, and still obtain correct clustering that would

have resulted had all pairs been considered. There are two independent ways of achieving

this reduction: (i) reduce the cost of each pair computation by opting for a less rigorous

and/or approximate method instead of aligning two sequences, and (ii) device faster methods

to detect sequence pairs in advance that exhibit significant promise for a good alignment and

then perform rigorous alignment only on those selected "promising pairs".

The inherent nature of sampling in EST data can add significantly to the computational

complexity of the clustering process. Even if one were to devise a scheme that intelligently

discards all non-overlapping pairs from overlap computation, the number of genuinely overlap­

ping ESTs may still be overwhelming in practice. This is because the sequencing procedure

may oversample the ends of the mRNA transcripts (giving them a deep coverage) while under-

sampling their mid-regions. The result is what we see in Figure 3.1, i.e., a vertical tiling of

ESTs on a source mRNA transcript. Thus the number of genuinely overlapping pairs could

grow at a quadratic rate as a function of the number of ESTs covering each transcript, which

could be very high for transcripts arising from over-expressed genes. This raises a critical issue

when dealing with large inputs containing hundreds of thousands to millions of ESTs, espe­

cially limiting the applicability of those software packages designed to handle only uniformly

sampled sets (e.g., fragment assemblers).

www.manaraa.com

24

cDNA

5' ESTs : 3' ESTs

Figure 3.1 Non-uniform sampling of mRNA resulting from the EST se­
quencing procedure.

Sequencing Errors and Artifacts

With current technology, even though the error rates are as low as 1-2%, it is important for

a clustering algorithm to handle errors in order to guarantee a high prediction accuracy. Errors

such as an incorrectly interpreted, included, or excluded nucleotide in a sequence are typically

handled during overlap detection — by modeling such errors as mismatches, insertions and

deletions in alignments. There are other types of errors and artifacts that can be detected at

an earlier stage and most of these errors are detected in a preprocessing step prior to overlap

detection:

• During sequencing, ESTs may get contaminated with the vector sequences adjoining the

cDNA clones. These sequences are easy to detect because they are part of the known

vector DNA sequence and are expected to occur at ends of ESTs. During preprocessing,

such sequences are detected and removed.

• The sequencing procedure may also have ambiguously read some bases and may have

marked such bases with low quality values. In the resulting ESTs, these bases are marked

with special characters such as 'N' or 'X', so that they can be treated accordingly by a

subsequent overlap detection scheme.

• ESTs derived from 3' ends of an mRNA usually retain portions of the mRNA's polyA

tail. The presence of such polyA tails in ESTs may be of interest only to alternative

poly-adenylation related studies. In other studies, such regions are uninformative and if

retained may only result in false overlaps. Thus as part of preprocessing, these polyA

www.manaraa.com

25

tails are trimmed off the ends of the ESTs.

* ESTs can also sometimes contain portions of chimeric cDNA clones. Accurately detecting

such artifacts is typically hard in a preprocessing step, and the task is generally deferred

to a later stage of overlap detection. If the genome of the underlying organism has

already been sequenced, then chimeric ESTs can be detected as those that have different

portions in them aligning (through a spliced alignment method) to different genomic

locations. Their detection, however, becomes much harder in the absence of the genome

sequence. A common method is to flag those ESTs that "bridge" two otherwise distinct

non-overlapping sets of ESTs. The problem with this approach, however, is that there

could also be ESTs that genuinely bridge two ends of an mRNA transcript, and therefore

this scheme could result in false labeling of such ESTs with chimeric origins. The number

of ESTs in the two otherwise distinct sets of ESTs being bridged, can also serve as an

additional indicator on the the confidence level of a chimeric prediction.

Natural Variations

If a pair of sequences overlap significantly but with a few mismatches and/or indels in their

underlying best alignment (s), then there are two ways to explain such disagreements: (i) the

underlying sequencing procedure incorrectly read the bases on one of the sequences, or (ii) the

two ESTs being compared are from alleles or paralogous genes that have these natural varia­

tions because of mutations or single nucleotide polymorphisms. The choice between these two

possibilities is made by looking at more than one overlapping pair at a time. For example, of

the 10 overlapping sequences shown in Figure 3.2a, only one has a nucleotide that is different

from the corresponding nucleotides in the other 9 sequences, indicating the high likelihood of a

sequencing error that caused the variation in the singled out sequence. Figure 3.2b shows a dif­

ferent case where such a disagreement is equally distributed among the 10 sequences indicating

that it is likely the result of a natural variation i.e., that the sequences were extracted from two

different gene paralogues or polymorphic genes. The underlying assumption is that the prob­

ability of such a variation occurring at the same position evenly across multiple overlapping

ESTs is too low to have likely occurred.

www.manaraa.com

26

A-
A"
A-
A"

A"
A"
A"
c -

t
(a)

A-
A"
A"
A-

c -
c -
C-
C-

t
(b)

Figure 3.2 Overlap layout suggesting a case of a (a) sequencing error, and
(b) natural variation.

Large data sizes

Since the initiation of cDNA sequencing projects in 1992 [Adams et al. (1991)], EST

databases have tremendously grown in their sizes. The dbEST portion ([Boguski et al. (1993)],

http://www.ncbi.nlm.nih.gov/dbEST/index.htmi!) of the NCBI GenBank is a public repository

for storing ESTs and full-length cDNAs generated by numerous sequencing efforts. As of May

2006, the dbEST database contains over 36.5 million ESTs, making it the largest public EST

data repository. Also, the number of ESTs increased «29% from 2004 to 2005. About 740

organisms are represented in this database, and human ESTs dominate the pool with about 7.7

million sequences, followed by mouse ESTs with 4.7 million sequences. Among plants, Oryza

sativa (rice) has over 1.1 million ESTs, followed by Triticum aestivum (wheat) with 854,397

ESTs. Over 40 organisms have more than 100,000 ESTs.

3.1.2 Clustering for Genome Assembly

Once a genome is sequenced through one of the strategies discussed in Chapter 2, the set

of sequenced fragments can be used to computationally "assemble" the genome. Despite rapid

advances in hardware speeds and memory capacities over the last two decades, assembling tens

of millions of fragments typical of large-scale genome projects places enormous computational

demands. For example, one of the assembly efforts by Venter et al. of the «3 billion bp human

genome took 20,000 CPU hours, a task that was brute-force parallelized to finish in 10 days

http://www.ncbi.nlm.nih.gov/dbEST/index.htmi

www.manaraa.com

27

G

Contigs G\ gap Gi_

F —

Figure 3.3 Illustration of the context of clustering in whole genome se­
quencing projects. Clustering F would partition it into two
clusters, one corresponding to Gi, and another to (So­

using ten 4-processor SMP clusters each with 4 GB RAM, along side a 16-processor NUMA

machine with 64 shared memory machine [Venter et al. (2001b)]. A majority of the compu­

tational effort in assembling genomes is spent in detecting pairwise overlaps. For example, in

the above mentioned human genome project, 10,000 CPU hours were spent only on computing

pairwise alignments for detecting overlapping pairs of fragments. In this aspect, the problem

of genome assembly is similar computationally to the problem of EST clustering described

earlier in this section — both involve a compute-intensive overlap detection phase. However,

clustering is typically an "easier" task, in that it is sufficient to form clusters based on detected

overlaps, whereas, in genome assembly additional computation is required to reconstruct the

supersequence(s) from the clustered sequences.

Due to this commonality in the nature of computation involved between genome assembly

and sequence clustering, several genome assemblers follow a two-phase approach to genome

assembly [Emrich et al. (2004); Havlak et al. (2004); Mullikin and Ning (2003)]: (i) first,

"cluster" the genomic fragments based on pairwise overlap information, and (ii) assemble each

of the clusters individually using traditional fragment assembly programs. The meaning of

clustering in this context is, however, different from what we described for EST clustering

(refer to the example in Figure 3.3): For example, let us assume a genome G, and a set of

fragments F sequenced from it as shown in Figure 3.3 by one of the sequencing strategies

explained in Chapter 2. Clustering F based on overlap information is expected to produce two

clusters, one each for the sequence-sampled genomic stretches G\ and This is because of

lack of overlap information to span the sequencing gap between G\ and 0%.

www.manaraa.com

28

The advantage of clustering fragments prior to performing fragment assembly is that it

breaks the initial problem into numerous subproblems (each corresponding to one output clus­

ter), so that each of the subproblems can be individually tackled using a fragment assembler. In

the above example, an assembly of the two clusters is expected to produce two supersedences,

called contigs representing the contiguous stretches of genome sampled by sequencing. There­

fore, a faster and more efficient clustering approach in the first phase on the entire input would

subsequently allow for a thorough compute-intensive assembly phase that guarantees a highly

accurate assembly.

This divide and conquer strategy of first clustering and then assembling is beneficial, how­

ever, only if the following assumptions hold:

1. There is a distinct computational advantage of using clustering ahead of running an as­

sembly software — the clustering phase takes significantly less time and/or substantially

reduced memory when compared to running the assembler on the input sequence data

directly.

2. Given that each cluster is subsequently processed individually by an assembly program,

the clustering phase should not separate any two sequences that may otherwise be as­

sembled into a same contig. This is essential for the "correctness" of the final assembly,

which is to ensure that the set of contigs output from a scheme that performs clustering

followed by individual assembly of clusters is the same as the set of contigs produced by

performing assembly directly on all the input sequences at once.

3. There are sufficient number of sequencing gaps that can then lead to substantially smaller

sized problems. A perfect sequencing strategy that covers every base along a genome

would produce no sequencing gaps, and therefore clustering would not be effective in re­

ducing the problem complexity for the subsequent assembly step. In practice, substantial

number of sequencing gaps result even if a genome is sequenced with high coverage. For

example, a WGS sequencing of the human genome with a 5.11X coverage performed by

Venter et al. produced over 100,000 sequencing gaps to be finished after scaffolding [Ven-

www.manaraa.com

29

ter et al. (2001b)]. In other words, this clustering based approach to genome assembly

presents a practically effective alternative.

3.1.3 Computational Challenges

While the challenges introduced by sequencing artifacts and large fragment collections are

similar to those outlined for EST data in Section 3.1.1.3, there are two main challenges to

performing clustering for genome assemblies:

• Repeats: Genome assembly is complicated by the presence of repeats. Fragments

originating from different but repetitive regions of a target genome may have spurious

overlaps with one another. During clustering, these spurious overlaps may cause the

repetitive fragments to cluster together thereby affecting the effectiveness of clustering to

break the initial problem size. Traditional methods to mask known repeats in fragments

as a preprocessing step can be used to reduce the number/size of such repeat-induced

clusters.

» Uniform vs. Non-uniform sampling: Unlike EST data, genomic fragment data

generated from whole genome shotgun sequencing projects and hierarchical sequencing

projects typically represent a uniform sampling over a target genome. This is because

the fragments are generated with a particular coverage on the entire genome (or BAC,

in case of hierarchical sequencing) specified at the time of sequencing. The implication

of uniform sampling is that the number of genuine overlaps expected among fragment is

linear in the size of the genome. However, this is not true with gene-enriched fragment

data because the underlying sequencing selectively samples gene-rich portions of the

genome, and the generated fragment data represent a non-uniform sampling over the

genome. Therefore, the number of valid overlaps could be quadratic in the number of

input fragments in the worst case. This makes the clustering of gene-enriched fragment

data similar in complexity to the problem of clustering ESTs. None of the traditionally

developed assemblers (including clustering based assemblers previously developed) are

www.manaraa.com

30

suited for an efficient handling of gene-enriched assembly — to this end, we developed

an efficient method, which will be discussed in the next chapter.

3.2 Literature Review

Numerous fragment assemblers and EST clustering methods have been developed over

the past decade. In this section, we will review these methods with primary focus on their

underlying algorithms to detect overlaps. Note that overlaps can be detecting by the naive

approach aligning every pair of sequences as discussed in Section 3.1.1.3. For convenience, we

use the word "sequence" to refer to both an EST and a genomic fragment.

Among the assembler class of algorithms, we will discuss three programs, CAP3 [Huang and

Madan (1999)], Phrap [Green (2003)] and TIGR Assembler [Sutton et al. (1995)], which are

popular among EST clustering community as well [Liang et al. (2000)]; although in principle,

any fragment assembly software can be used for clustering ESTs to the same effect. (For a

detailed survey of fragment assembly and EST clustering algorithms, see [Huang (2005); Pop

et al. (2002)] and [Kalyanaraman and Aluru (2005a)] respectively. Among the EST clustering

algorithms, we will discuss UniGene [Pontius et al. (2003)], STACK [Christoffels et al. (2001);

Miller et al. (1999)], Ulcluster [Pedretti (2001)], TGICL [Pertea et al. (2003)] and xsact [Malde

et al. (2003)].

PaCE [Kalyanaraman et al. (2003a)], which is our clustering method can be applied to

cluster both EST data and genomic fragments, and will be described in Chapter 4.

3.2.1 Methods for EST Clustering and Genome Assembly

3.2.1.1 TIGR Assembler

The TIGR Assembler is one of the oldest fragment assembler programs, which has also been

used in various EST clustering projects [Nelson et al. (1997); Rounsley et al. (1996); Satou

et al. (2002); Ton et al. (2000)]. The algorithm is as follows: Given an input of n sequences,

the overlap detection phase evaluates all (%) pairs — for each pair, the algorithm identifies

all fixed-length («10 bp) exact matches and then considers only those "promising pairs" that

www.manaraa.com

31

have substantially long stretches of such matches for further alignment computations. From

the aligned pairs, the algorithm selects only those pairs with a satisfactory sequence similarity

over the overlapping regions. The clusters are then formed by initially assigning one unique

cluster for every sequence ("or seeds") that has "very small number" of overlaps and then

iteratively merging clusters by considering the pairs in the decreasing order of their overlap

quality. The output is a set of contigs. Storing and sorting overlaps implies a worst-case 0(n2)

space complexity. The run-time is 0(n2) for evaluation of each pair of sequences plus the cost

to align all the promising pairs identified by the algorithm.

3.2.1.2 Phrap

Phrap [Green (2003)] starts its overlap detection phase by building a list of sequence pairs

with fixed-length matches and then sorting the list such that all matches of the same pair are

consecutively placed. For each such "promising pair", it computes an alignment band centered

around the diagonal containing all matches and then computes a best alignment using a banded

version of the Smith-Waterman technique [Smith and Waterman (1981)]. If there are many

matches, then the band of diagonals is made wider to include all the word matches. Using

only those pairs with a band score above a certain desired threshold, a layout of overlaps

is then constructed and subsequently a contig is constructed from the layout using only the

portions of ESTs that have a high sequence quality (or "quality value"). Because of storing

and sorting pairs with fixed-length matching substrings, this algorithm has a space complexity

of 0(n2). Even though this is the worst-case complexity, the likelihood of such a quadratic

requirement is high for EST data because of the underlying non-uniformity in sampling, as

shown in Figure 3.1. The run-time complexity is worst-case quadratic and is dominated by

the cost to align all the promising pairs identified by the algorithm.

3.2.1.3 CAP3

In the overlap detection phase, the CAP3 [Huang and Madan (1999)] algorithm detects

pairs that show "promising" characteristics for good alignment, without having to enumerate

www.manaraa.com

32

all pairs, as follows: concatenate all input sequences into one long string with adjacently

placed strings separated by a special delimiter character. Quickly identify high scoring chains

of "segment pairs" within each sequence against the concatenated string. This is implemented

through a lookup table approach, similar to the method in BLAST [Altschul et al. (1990)].

A "segment pair" is an alignment without gaps and is initially computed by looking at all

exact matches of a specified fixed-length and extending these matches as far as possible in

either direction. Only those pairs that have a chain score greater than a specified threshold

value are later considered for global alignment computation [Needleman and Wunsch (1970)].

The alignments are then considered in the decreasing order of their scores and an "overlap-

layout" is constructed using the order and orientation of each aligning pair. In this greedy

process, inconsistencies due to violating alignments can be resolved in favor of the higher

scoring alignments. The final step is to compute a multiple sequence alignment from each

overlap-layout component, thereby resulting in a consensus contig. The space complexity is

worst-case quadratic because of storing and sorting all the promising pairs. The dominant

run-time cost is that of aligning all the promising pairs.

A parallelized version of CAP3 is available. The parallel version called PCAP [Huang et al.

(2003)] implements the serial CAP3 such that multiple independent serial jobs can be initiated

simultaneously on multiple workstations of a cluster, each operating on an independent portion

of the input sequence data.

3.2.1.4 UniGene

The UniGene project [Pontius et al. (2003)] undertaken by the NCBI is an initiative towards

clustering all GenBank ESTs by organisms and by individual gene sources, i.e., ESTs from

different spliced variants of the same gene are also clustered together. The UniGene clustering

scheme performs incremental daily processing of ESTs submitted to the dbEST database,

computed as BLAST alignments of each new EST with the contents of all individual clusters.

Care is taken that each cluster contains at least one EST derived from the 3' terminus of

the source mRNA transcript. This is ascertained by the presence of a polyA tail in the

www.manaraa.com

33

corresponding EST(s) (which is not removed as part of its preprocessing step). Even though the

run-time of the UniGene method is quadratic in the number of ESTs, incremental processing

in batches allows for quick updating of clusters as new sequences are added to the database.

The entire UniGene cluster database is accessible online at the URL http://www.ncbi.

nlm.nih.gov/UniGene/. As of September 2005, the database contains over 700,000 gene-

oriented sequence clusters representing over 50 organisms, with the human and mouse col­

lections leading the chart with 53,100 and 42,555 UniGene clusters respectively [Wheeler et al.

(2005)].

3.2.1.5 STACK

STACK (Sequence Tag Alignment and Consensus Knowledgebase) [Christoffels et al. (2001);

Miller et al. (1999)] is one of the first EST clustering programs and was developed to achieve

tissue-specific clustering that groups ESTs by transcript source. The underlying algorithm per­

forms simple all-versus-all pairwise comparisons with the overlap between each pair detected

through a word-multiplicity measure called d2, a distance measure to assess sequence dissimi­

larities. Subsequently, the pairs with significantly small distances are used to form the clusters

by an agglomerative approach called d2-duster [Torney et al. (1990)], as follows: initially, each

input sequence occupies a cluster of its own, and as the program progresses each significant

overlap merges the corresponding clusters forming a supercluster. This mechanism achieves

a transitive closure clustering, in which two entirely different sequences are brought together

because of a common third sequence with which each share a good overlap. Each cluster is

post-processed by the Phrap assembler to build transcript assemblies. The STACK algorithm

has a run-time complexity that is proportional to the product of Q) and the time taken to

compute d2 measure.

Because of its simplicity, the STACK algorithm is also easily parallelized [Carpenter et al.

(2002)]. The all-pairs work is distributed evenly across processors, and the clustering results

are collected and recorded serially by one processor. For an example of STACK'S application,

see [VanBuren et al. (2002)].

http://www.ncbi

www.manaraa.com

34

3.2.1.6 TGICL

The TGICL clustering software [Pertea et al. (2003)] was developed by TIGR. The algo­

rithm achieves clustering by performing an all-versus-all pairwise alignment but using a greedy

alignment algorithm called megablast [Zhang et al. (2000)]. The advantage of using megablast

is that it provides a significant speedup («10 times) while aligning two highly similar se­

quences over its dynamic programming counterparts, although the run-time increases as the

similarity decreases. Because of its simplicity, this algorithm can also be easily parallelized.

Post-clustering, CAP3 is used for assembling the sequences of each cluster.

TIGR maintains a large database of clustered ESTs called the "TIGR Gene Indices". The

initiative is towards maintaining a compendium of transcriptomes of several organisms. The

database has clusters built for ESTs collected from over 32 animal species including the human

and mouse, and over 33 plant species including wheat and maize.

3.2.1.7 Ulcluster

The Ulcluster method [Pedretti (2001)] was originally developed for clustering 3' generated

ESTs into 3' transcripts. The algorithm is based on the following incremental approach:

Initially, each sequence is in its own cluster. At any point of execution, a list of "representative

ESTs" is maintained for each cluster (typically its longest EST(s)). A global hash table is

constructed by preprocessing all input ESTs, such that it indexes all fixed-length (<16 bp)

substrings within all ESTs. The ESTs are then considered one at a time. For a given EST, all

clusters with at least one representative EST that has at least a specified number of fixed-length

matches are identified. Alignment computations are then performed between the input EST

and each of the representative ESTs identified in each cluster. The input EST (and its cluster)

is then merged into one of the clusters containing the best overlapping representative, provided

that best alignment(s) pass the specified similarity threshold; otherwise the clusters are left

intact. The space complexity is proportional to the size of input plus the size of the global hash

table. The worst case run-time complexity is 0(n2) multiplied by the average cost to align

two sequences; for large clusters, the run-time is likely to be close to the worst-case behavior,

www.manaraa.com

35

as all potential cluster merges are evaluated through alignments with ESTs considered one at

a time.

A parallel version of the Ulcluster algorithm has also been developed [Trivedi et al. (2002)].

The input ESTs and the initial set of clusters are evenly partitioned across processors, and

each processor constructs the hash table for its local portion of the ESTs. The algorithm then

performs one parallel step for each input EST, in which the sequential algorithm is run locally

on each processor and the cluster to which the EST has to be merged with is decided through

a collective communication at the end of the step. There are two main drawbacks with this

parallel approach: (i) the number of parallel steps is proportional to the number of input ESTs,

independent of the number of processors used, and (ii) the speedup achieved in each step is

dictated by the processor with the most number of alignments to compute. The program is

extensively used on clustering rat ESTs (http://ratest.eng.uiowa.edu).

3.2.1.8 xsact

Concurrent to our research, Malde et al. [Malde et al. (2003)] developed xsact, which is

a serial program for EST clustering that also generates promising pairs based on maximal

matches. The xsact algorithm first constructs a generalized suffix array on the input ESTs.

This is achieved by recursively sorting prefixes, similar to the approach in [Manber and Myers

(1993)] — this algorithm was developed prior to the development of linear time algorithms for

directly constructing suffix arrays [Karkkainen and Sanders (2003); Kim et al. (2003); Ko and

Aluru (2003)]. The algorithm then detects each pair with a maximal match of length I bp, I

times, but reports only one instance of it to the alignment module. The pairs are generated in

no particular order, and all reported pairs are aligned. Only those alignments which satisfy a

specified similarity threshold are stored. The pairs are then sorted in decreasing order of their

alignment scores and considered in that order for cluster merges. The space complexity of the

algorithm is dominated by the number of pairs that have satisfactory alignments, which within

each generated EST cluster is worst case quadratic in its number of ESTs. The run-time is

dominated by the cost to align all promising pairs reported.

http://ratest.eng.uiowa.edu

www.manaraa.com

36

3.2.2 Discussion of Related Work

Given the complexities of sequence data, ensuring both high quality and high performance

in a clustering method is the primary challenge faced by algorithm designers. Table 3.1 summa­

rizes the various computational aspects of each of the EST clustering algorithms and fragment

assemblers developed prior to or during this dissertation research. For comparison purposes,

the table also shows the corresponding aspects of our method, PaCE. The input number of

sequences is denoted by n. The average length of a sequence is assumed to be a large con­

stant for the purpose of run-time and space complexity calculations. Both expected ("Exp.")

and worst-case ("WC") space complexities are provided for each method. The run-time com­

plexity is proportional to the product of the number of alignments computed and the taken

to perform each alignment. The algorithm used to compute pairwise alignment is indicated

against each entry; DP denotes one of dynamic programming table based methods. WGS,

BAG and GE stand for fragment data generated from whole genome shotgun, BAC-by-BAC

and gene-enriched sequencing projects respectively.

3.2.2.1 Run-time Concerns

Even though run-time intensive, alignment based methods provide the most accurate means

to capture sequencing errors and natural variations. For this reason, methods such as TIGR

assembler and UniGene perform all vs. all (i.e., (")) pairwise sequence alignments, although as

many alignments may not be necessary to arrive at the final answer. The all vs. all approach

is not scalable because of a strict quadratic increase in run-time. For example, even assuming

that it takes only about a microsecond to align two sequences on a GHz processor, performing

all vs. all alignments for 1 million fragments will take 6 days of compute time; while for 2

million fragments it would 24 days.

One way to overcome this problem is to resort to faster methods of detecting overlaps, how­

ever, at risk of compromising on the optimality of overlap quality — e.g., STACK'S d2 method.

Alternatively, a more efficient approach to reduce the run-time is to compute alignments only

for a reduced subset of the Q) pairs, without missing any overlapping pair. A frequently used

www.manaraa.com

37

Software Target Space complexity Alignments Promising Parallelism
Application(s) Exp. WC computed pairs scheme

TIGR Genome 0(n) 0(ra2) 8(nf) look-up No
assembler assembly

(WGS, BAC)
DP table

Phrap Genome
assembly
(WGS, BAC)

0(ra) 0(n2) 0(n2)
DP

look-up
table

No

CAP3/PCAP Genome 0(n) 8(n?) 0(n2) look-up limited
assembly DP table scaling
(WGS, BAC)

UniGene Incremental
EST
clustering

0(ra) 0(n) 0(n2)
DP

all vs. all No

STACK EST
clustering

0(n2) 0(n2)
(P method

all vs. all large
memory
SMP

TGICL EST
clustering

eM 0(n2) 0(n2)
megablast

all vs. all large
memory
SMP

Ulcluster 3' EST 0(n) 0(n) 0(n2) look-up limited
clustering DP table scaling

xsact EST
clustering

8(%12) 0(n2)
DP

maximal
match
approach

No

PaCE EST 0(n) 0(n) 0(#promising maximal massively
clustering, pairs), DP match parallel
genome approach
assembly (GE)

Table 3.1 Summary of various previously developed fragment assemblers
and EST clustering methodologies. PaCE is our methodology.

www.manaraa.com

38

technique used to accomplish this is to preprocess the sequences before computing any align­

ment such that only those pairs that show a significant promise for a potential good overlap are

subsequently considered for alignment computation. Detecting exact matches is often much

quicker than detecting inexact matches, and therefore an exact match detection scheme can

be used to identify such promising pairs. Most of the methods in Table 3.1 identify exact

matches as short fixed length matches using lookup table [Aluru and Ko (2005)] approaches.

The PaCE algorithm provides a more efficient alternative by identifying matches as variable

length maximal matches. The difference in these methodologies will be elaborated in the next

chapter.

3.2.2.2 Memory Concerns

In large-scale sequence analysis, more often than not, memory concerns pose a more serious

problem than long run-times. As Table 3.1 shows, all the three fragment assembly programs

have an expected linear memory requirement when applied to genome assembly. This is because

of the uniform sampling that is expected in WGS and BAC sequenced data. However, if

they are applied to non-uniformly sampled data (e.g., ESTs), the memory requirement grows

quadratically. As for EST clustering, even the expected memory requirement is quadratic for all

approaches except the incremental UniGene1. This quadratic memory requirement is because

the underlying methodologies store overlaps in memory — a strategy that is not necessary for

clustering, as demonstrated by the PaCE method.

3.2.3 Performance Evaluation of Related Work

3.2.3.1 EST Clustering

For EST clustering, performance results have been published in the past by other groups

working on different software programs. Carpenter et al. (2002) report the clustering of 15,876

human ESTs on an SGI Origin 2000 shared memory machine2 using STACK'S d2-duster

'The memory requirement is calculated assuming that a new increment of sequences is << the number of
sequences already clustered; otherwise UniGene's memory requirement increases quadratically as well.

2Available memory is not specified in the paper.

www.manaraa.com

39

Number of saved
pairwise overlaps

(Reported by CAPS)
561,916

2,308,885
21,608,972
16,357,088

X
X
X"

Table 3.2 (a) Run-times (in minutes) of assembly programs on an ar­
bitrary mouse EST collection downloaded from GenBank. 'X'
denotes that 2 GB memory was not sufficient for the program to
complete, (b) Pairwise overlaps stored by CAP3.

method in 2 minutes. The paper also reports that the largest data clustered contains 1,198,607

ESTs; however, the performance results are not reported. The largest clustering reported by

the TGICL program [Pertea et al. (2003)] was that of 1.7 million ESTs of an unspecified species

in 1 hour of a PVM cluster with 20 Pentium III nodes. Overlaps are detected by the megablast

program.

Of the fragment assemblers, the TIGR assembler, Phrap and CAP3 programs are popular

for EST clustering as well [Liang et al. (2000)]. We evaluated these three serial programs using

a single Intel Xeon CPU 3.06GHz processor of an IBM xSeries node, each with access to 2 GB

RAM. Table 3.2 shows the results on various subsets of a mouse EST collection downloaded

from GenBank and containing 200,000 ESTs. The table also shows the number of valid overlaps

detected and saved by the CAPS program for each of the input subsets. As can be seen, the

number of overlaps increases quadratically from the 5,000 data point to 10,000, and rather

disproportionately for 25,000 and 50,000 ESTs. This is because several overlaps are screened

out by the program as "false" candidates due to chimeric ESTs in the input. The non-uniform

increase in the run-time with input size is consistent with the non-uniformity in the detected

overlaps.

The non-uniformity in the expected run-times and overlap information depends on the EST

Number of
input sequences

TIGR Assembler Phrap CAPS

5,000 17 5 44
10,000 168 17 186
25,000 X 211 704
50,000 X 219 585

100,000 X 340 X
150,000 X X X
200,000 X X X

1

www.manaraa.com

40

Overlaps vs. ESTs
x 10

CAPS software

Q.

E 0.5

Input Size (in number of ESTs) x 1Qs

Figure 3.4 Number of overlaps stored by the CAP3 program while cluster­
ing different subsets of a rat EST data set. The peak memory
usage reached 2 GB for 150,000 ESTs.

data. To further understand this, measured the number of overlaps detected by CAP 3 on a

different input data — an arbitrary collection of 150,000 rat ESTs downloaded from GenBank.

The results plotted in Figure 3.4 indicate a quadratic increase in overlaps for this data, and

also that CAP3 could complete for a bigger data (up to 150,000) with an available 2 GB

RAM, without running out of memory. Both these observations confirm the strict input data

dependency of the underlying problem.

3.2.3.2 Genome Assembly

Several whole genome projects have been conducted in the past, with one of the largest

genomes being that of the human. The Celera genomics assembly team estimated that it would

take tens of thousands of CPU hours and approximately 600 GB of memory to assemble the «3

billion bp genome based on their previous fruitfiy assembly [Myers et al. (2000)]. To meet these

high computational demands, Celera used ten 4-processor SMP clusters with 4 GB memory

each, along side a 16-processor NUMA machine with 64 GB shared memory, and engineered

an incremental approach that reduced the peak memory usage to 28 GB. The assembly took

20,000 CPU hours on 27.27 million WGS fragments.

[Huang et al. (2003)] report the assembly of mouse genome using PCAP, which is the

www.manaraa.com

41

Number of processors 4 8 16 32 64
Run-time in minutes 21 17 14 81 X

Table 3.3 Run-time scaling of PCAP on 322,000 gene-enriched maize frag­
ments. "X" denotes that the program was hung performing I/O
operation.

parallel version of CAPS assembler. The input comprised of 33 million mouse WGS fragments.

The compute platform included 20 Compaq ES40 servers, each with 4 processors and 4 GB

RAM, along side another Compaq ES40 server with 16 GB RAM. Also provided is a 32

GB shared file system and a 17 GB scratch space on each server. Multiple alignment jobs

were launched simultaneously on each processor, and the implementation does not support

any interprocessor communication; instead, data sharing is through the file system, making

the program I/O intensive. The assembly was completed in 7 days (on 80 processors) and

the number of overlaps was only 273 million, confirming the expected linear complexity with

uniformly sampled WGS data.

To study the effect of I/O on scaling using a commodity cluster, we ran CAP3 on «322,000

maize gene-enriched sequence data of total length 250 million bp. The platform used was an

IBM xSeries cluster with Intel Xeon processors. The run-time scaling is reported in Table 3.3.

As the table shows, the run-time actually increases after 16 processors, and on 64 processors,

the program failed to respond.

3.2.4 Need for Scalable High-performance Computing Methods

Given the obvious limitations in compute power and memory capacities of a serial computer,

several EST clustering and genome assembly programs have adopted parallelism as a means to

increase available memory and achieve additional speedup. All these parallel approaches are

direct extensions of their corresponding serial counterparts, implying a strong coupling among

the parallel jobs due to high data inter-dependencies. As a result, the projects involving these

methods resort to using high-end workstations with large shared memory so that the entire

www.manaraa.com

42

data can be made available through the shared memory to all the processors. If the entire data

does not fit in one shared memory machine, then multiple machines are used, different portions

of the data are loaded from the file system into a local shared memory, and the processing is

performed in batches.

The rudimentary nature of these parallel schemes results in poor scalability, I/O-intensive

computation and very long run-times. Moreover, the inherent sequential approach within these

algorithms limits the speedups achievable from these parallel systems. In addition, the shared

memory architecture itself imposes a limitation on the number of processors — only a few tens

to just over a hundred processors are available in state-of-the-art shared memory architectures.

In contrast, several hundred gigabytes to even terabytes of memory is easily available in state-

of-the-art distributed memory architectures — e.g., the IBM BlueGene/L architecture supports

thousands to even tens of thousands of processors with an aggregate distributed memory of

several terabytes available through a fast interconnection network. Such systems could serve

as ideal platforms for performing large-scale sequence analysis, providing both an order of

magnitude speedup and capability to scale up to much larger data sets. The main challenge,

however, is to have an inherently parallel algorithm that can efficiently exploit the high compute

power and memory capacities.

www.manaraa.com

43

CHAPTER 4. A SCALABLE PARALLEL CLUSTERING

FRAMEWORK FOR LARGE-SCALE SEQUENCE ANALYSIS

In this dissertation, we present the design, development and application of a scalable parallel

algorithm and software for performing DNA sequence clustering. A preliminary version of this

method was developed as part of my M.S. thesis research [Kalyanaraman (2002)].

4.1 The Sequence Clustering Problem

Problem Statement: Let S — {&], s2, - • •, s„} denote the set of n input sequences over

an alphabet £. Two sequences .s,, s,j € S are said to be related if either .s, and Sj show a

"significant" overlap, or 3sk G S to which both s, and Sj are related. The problem of sequence

clustering is to partition S such that V.sz, sj E S, Si and Sj are in the same subset (or "cluster")

if and only if s, and Sj are related.

For generality, let us not assume anything on the type qf DNA sequence data to be clustered

— they can be ESTs, cDNAs, or genomic fragments, or any other type of biological sequence

that can be computationally represented as a string over the DNA alphabet. Also, the above

formulation is generic enough to accommodate any preferred alignment method. For instance,

in the context of clustering for genome assembly, two sequences sharing a good suffix-prefix

alignment are potential candidates to be genomic neighbors, and can therefore be considered

to have a significant overlap. In the context of EST clustering, if the underlying objective is

to cluster together sequences derived from the same gene, then overlaps can be detected as a

chain of local alignments. Without loss of generality, we will henceforth assume that the choice

of overlap detection method is suffix-prefix alignment computation.

www.manaraa.com

44

A
t

fz h

I
CAGGAGGACCAG h

AACGAGA

AGATCACAG

CAGGAGATA GGACCAGATATAT

TCTCTGGACCA h

AACGAGATCACAGGAGATA ????????GGACCAGATATAT

Consensus Sequence (b)

Figure 4.1 Examples to show the effect of transitive closure clustering in
the context of genome assembly.

The above formulation of clustering is also sometimes referred to as transitive closure

clustering because the definition of relationship between sequences is transitive in nature.

Thus it is possible to have two entirely distinct sequences in the same cluster simply because

there is a third sequence to which both are related. An example in the context of genome

assembly in which three fragments are clustered together based on suffix-prefix alignments is

shown in Figure 4.1a. Note that the clustering is effected regardless of the existance of an

overlap between /i and f$. This formulation does not guarantee that the sequences in the

same cluster conform to a consistent overlap layout. An illustration of an inconsistent layout

shown by sequences in the same cluster is illustrated in Figure 4.1b. The idea is to defer

the task of resolving such inconsistencies to later stages post-clustering, and instead primarily

focus on breaking down the initial problem size through clustering.

In what follows, we will explain our parallel clustering algorithm. For ease of exposition,

we first describe our serial algorithm, and later describe its parallelization.

Given that overlaps constitute the primary basis of clustering, a simple approach to cluster

n sequences, each of length I bp on an average, is by evaluating all pairs of sequences for

potential overlaps. Figure 4.2 outlines this approach. The "Find" operation on a sequence

returns its current cluster, and the "Merge" operation on two clusters performs a union of the

two clusters. This simple approach to clustering has the following advantage: even though

4.2 A Serial Clustering Algorithm

www.manaraa.com

45

Algorithm 1 A Naive Algorithm

Input: Set S = {si,S2, • • • sn} of n sequences
Output: A partition C = {Ci, C2,... Cm} of S, 1 < m < n

1. Initialize Clusters:

VI < z < Ti, Cj •(— {sz}, C <— C U Ci
2. FOR V(sj,sj) DO

score Align{si, Sj)
IF score is significant THEN

Cp Find(si)
Cq f- Find(sj)
Merge{Cp,Cq)

3. Output C

Figure 4.2 A naive serial clustering algorithm. The worst-case run-time
and space complexities of the algorithm are 0(n2 x I2) and
0(n x I), respectively.

Step 2 loops (2) times, the overall number of "Merge" operations is limited to at most n — 1,

regardless of the nature of sequence data. Each merge corresponds to an overlapping pair of

sequences, although the converse need not be true. However, it is not possible to enumerate

these pairs directly.

Step 1 takes 0(n) run-time. Each of the Q) loops in Step 2 computes an alignment that

costs 0(l2). The "Merge" operation can be implemented as a simple set union operation

that takes 0(n) time, and the "Find" operation can be implemented to run in 0(1) time

through an array based implementation. The overall run-time complexity is 0(n2 x l2)+0(n2)

(= 0(n2 x I2)), and the space complexity is 0(n x I).

Observation 1 At any stage of Algorithm 1, the set of clusters C represents a partition of the

input set S. This implies that the "Merge" and "Find" operations are disjoint set operations.

This observation can be exploited by implementing the set of clusters as a union-find data

structure [Tarjan (1975)]. This enables each "Merge" and "Find" operations to be performed

in time proportional to the inverse of Ackerman's function, which is a very small constant for

www.manaraa.com

46

all practical purposes.

4.2.1 Reducing the Number of Pairs Aligned

4.2.1.1 Promising Pairs

Algorithm 1 computes 6(n2) alignments. One way to reduce the number of the alignments

computed without affecting the quality of clustering is to take advantage of the low frequency

of sequencing errors and natural variations expected in sequence data. Because of low error

rates, sequences that show significant overlaps are expected to contain long exact matches,

while the converse is not necessarily true. This observation is exploited by several previously

developed methods in the following manner: restrict alignment computations to only those

pairs that contain exact matches of a specified fixed-length w. The underlying algorithms

identify such pairs using a lookup table to index all w—length substrings within each input

sequence [Aluru and Ko (2005)]. In practice, the value of w is limited to just over 10, even

though low error rates may allow for higher values. This is because the lookup table's size is

exponential in w. For example, a value of 12 implies 412 = 16 million entries to store (for DNA

alphabet); while an expected error rate of 2% over a 100 bp long aligning region allows a value

up to 33. Another downside to this fixed-length exact match based approach is that a long

exact match of length I will reveal itself as (Z — w + 1) consecutive w—length matches.

To overcome the above limitations, we define a promising pair as follows:

Definition 1 A maximal match between a pair of sequences is an exact match that cannot be

extended on either side to result in a longer match.

Definition 2 A promising pair is a pair of sequences that has a maximal match of length at

least w.

The value of w can be calculated as follows: if e denotes the expected sequence error

rate (0 < e < 1), then for two sequences to align over a length Za, it is necessary (but not

sufficient) that the aligning region contains an exact match of length at least w = L6Xj"+1 J • In

www.manaraa.com

47

Section 4.2.2, we describe our algorithm to generate promising pairs in amortized O(l) time

per pair.

4.2.1.2 Clustering Heuristic

Another independent way to reduce the number of pairs aligned from Q) is by taking

advantage of the following observation.

Observation 2 Once a pair of clusters have been merged, it is no longer necessary to evaluate

any two sequences originating from the merged cluster, as the result has no further effect on

clustering.

This implies that it is sufficient to compute alignments only for pairs that have sequences

in different clusters. If both sequences of a pair are in the same cluster, then they are not

aligned, thereby resulting in run-time savings. If the sequences are in two different clusters,

an optimal alignment is computed. If the resultant alignment quality satisfies the specified

overlap criteria, then the clusters containing the two sequences are merged as in Algorithm 1;

otherwise, the clusters are left intact and the alignment effort is wasted.

While the above technique has the potential to reduce the number of pairwise alignments

computed, it does not guarantee the same. In the worst-case event of no overlapping pairs of

sequences in an input, this scheme still evaluates all Q) pairs. For this reason, this improvement

is only a heuristic; henceforth, we will refer to it as the clustering heuristic. On a similar note,

generating promising pairs is also only a heuristic; in the worst-case, all sequences can share

an exact match of length w, while no sequence overlaps with any other sequence.

4.2.1.3 Pair Generation Heuristic

Run-time savings achieved using the promising pair heuristic is data dependent — the

presence or absence of sequence pairs with sufficiently long maximal match is a property of

the input data. In case of the clustering heuristic, however, this dependency is only part of it.

A more important factor that dictates the number of pairs aligned is the order in which the

promising pairs are processed. A pair that passes the overlap test leads to merging of clusters,

www.manaraa.com

48

thereby obviating the need to perform any further alignments for pairs that are part of the

same cluster. While such pairs cannot be predicted prior to their alignment evaluations, their

early identification causes clusters to merge sooner, which in turn leads to potential savings in

run-time. This hypothesis forms the basis of our pair generation heuristic, which is basically

a greedy mechanism to maximize the run-time savings achievable from the combination of the

promising pair and clustering heuristics.

The pair generation heuristic is as follows: Instead of generating promising pairs in an

arbitrary order and considering them for potential overlaps in that order, generate and consider

them in non-increasing order of their maximal match lengths — longer a maximal match

between two sequences, higher the likelihood of the pair succeeding the overlap test. Therefore,

evaluating pairs in non-increasing ("decreasing" for ease of exposition) order of their maximal

match lengths is expected to result in early cluster merges, potentially reducing subsequent

alignment computation. Note that the heuristic also requires that the promising pairs be not

just considered but also generated in decreasing order of maximal match lengths — generating

all promising pairs and later sorting them would involve storing all promising pairs, which could

be quadratic in the worst case. For this reason, we developed an "on-demand" promising pair

generation algorithm that does not necessitates storing of pairs. The overall pair generation

algorithm is space optimal and will be described Section 4.2.2. Taking into account all the

heuristics described so far, Algorithm 1 can be improved as shown in Figure 4.3.

4.2.2 An Optimal Algorithm for On-demand Generation of Promising Pairs

Ideally, each promising pair should be generated only once. But a given pair of strings

may have multiple distinct maximal matches, or a given match could be maximal in multiple

pairs of locations between the same two strings. See Figure 4.4 for an illustration. One way

to avoid generating multiple copies of the same pair in such cases is to record a pair the first

time it gets generated and later discard any future generation of the same pair. This simple

scheme, however, requires storing all generated pairs, potentially requiring 0(n2) memory. As

a compromise, the algorithm described below operates in linear space and generates each pair

www.manaraa.com

49

Algorithm 2 Algorithm 1 with Promising Pairs, Clustering and Pair Generation Heuristics

Input: Set S — {si, S2, • • • sn} of n sequences
Output: A partition C = {C\, C?,... Cm} of S, 1 < m < n

1. Initialize Clusters:
C < - 0
VI < z < n, Cj {s,}, C C U Ci

2. REPEAT
(s i , S j) < — generate next promising pair in decreasing order of maximal match length
C p < r - F i n d (s i)

Cq <- Find(s j)
IF Cv + Cq THEN

score <— Align(s i , S j)

IF score is significant THEN
Union(Cp, Cq)

UNTIL no more promising pair to generate
4. Output C

Figure 4.3 Algorithm 1 improved by the promising pairs, clustering and
pair generation heuristics.

at least once and at most as many times as the number of distinct maximal matches in it.

For example in Figure 4.4, the algorithm will generate (si, S2) exactly once, while (53,54) is

generated at least once and at most twice.

4.2.2.1 Notation

Without loss of generality, assume that 5 is a set of DNA sequences over the alphabet

S = (A, C, G,TJ. For a string s: let s[i] denote the character at position i; s(i) denote the

suffix starting at z; and |s| denote the length of s. Let N = S"=i IsiIi.e., / = ^. A match a

between two strings is said to be left-maximal (alternatively, right-maximal) if the characters

that immediately precede (alternatively, follow) a in the two strings are different or if a is a

prefix (alternatively, a suffix) of either string. Thus a is a maximal match if it is both left-

and right-maximal.

By definition, a suffix tree of a string is a rooted compacted trie of all its suffixes [Weiner

(1973)]. A generalized suffix tree (GST) of a set of strings is a rooted compacted trie of all

www.manaraa.com

50

A i a Ç g j a A G k 7 T

„ —
G j a v i G t a T C j 7 A ^ & a T

8a Vic^i i{=^& « &=*>&
(a) (b)

Figure 4.4 Examples showing two cases of maximal matches, (a) A match
a is maximal in two pairs of locations (ij) and (i,k) between
si and S2- (b) Two maximal matches a and 7 exist between S3
and S 4 .

suffixes all strings [Gusfield (1997a)].

Let G denote the GST of all strings in S. A special terminal character '$' is appended to

each input string in S to ensure there exists a leaf node for every suffix of each string. Let

the path-label of a node u be the string obtained by concatenating all edge labels from the

root to u; if u is a leaf node, the terminal character '$' is excluded in its path-label. Let the

string-depth of a node u denote the length of its path-label.

4.2.2.2 The Algorithm

The GST G for S is first constructed using a linear time algorithm [Ukkonen (1995); Weiner

(1973); McCreight (1976)]. The nodes in G with string-depth > w are then sorted in decreasing

order of string-depth. Because string-depth of any node in a GST is bounded by the length of

the longest string in S, radix sorting is used to run in linear time.

The main idea behind our pair generation algorithm is the following: Sequences Sj and Sj

share a maximal match a if and only if

CI. 3 u such that path-label(u)= a.

C2. 3 k and I such that f t{k) and fj(l) are in subtree rooted at u.

www.manaraa.com

51

C3. (right maximality) If u is not a leaf, f l{k) and /'-,(/) are in subtrees of different children

of u.

C4. (left maximality) If k ̂ 1 and I ^ 1, fa[k — 1] ^ fj[l — 1].

Maximal matches can be generated by considering each node in the GST and identifying

pairs of suffixes in the node's subtree that satisfy C3 and C4. To generate maximal matches

in decreasing length order, we sort the nodes in GST in decreasing order of the lengths of

their path-labels using radix sort, and process them in that order. Instead of checking C3 and

C4 for each pair, we generate maximal matches in amortized 0(1) time per pair as follows:

For node u and c € S, let ic(u) = {s,(j) j s,(j) is in subtree of it; j > 1; a,[j — 1] = c}, and

l>(u) = (sj(l) | ,5,(1) is in subtree of u}. These are collectively known as Isets at u. The Isets

at leaves are computed directly. For an internal node u and c G S U {A}, £c(u) = Uv ̂ c(u')

over all children u' of u. The Isets are maintained as linked lists to allow constant time union

operations.

Consider pair generation at internal node u corresponding to path-label(u) as the maximal

match. At this stage, pair generation at u's children would have been completed and their Isets

are known. The set of pairs at u are obtained by computing U lc{u') x lc* ('«"), where u' and u"

are two different children of u (to satisfy C3), and c^c' or c = c' = A (to satisfy C4). After

pair generation at u is finished, its Isets are computed from the Isets of its children. At a leaf

u, right maximality is automatically satisfied. Hence, pairs are generated as U £c(u) x lc'{u),

where c^c zorc = c / = A.

Note that the above scheme generates pairs in the form (s i (j), s # (j1)) instead of (s,, sz-).

This is needed if pairwise alignment computations are anchored to the maximal matches. If

arbitrary suffix prefix alignments are computed, then it is wasteful to generate the same pair

multiple times. In such a case, the above algorithm can be modified to reduce the number of

duplicate generations of the same sequence pair, while still guaranteeing 0(1) generation time

per pair. This improvement is explained below.

Instead of partitioning the suffixes in a node's subtree into its Isets, we now partition the

strings represented in a node's subtree. If multiple suffixes from a string are present in the

www.manaraa.com

52

subtree, an arbitrary suffix is chosen, and the string is placed into the Iset corresponding to

the character in the string that precedes this suffix. Formally, s, G lc(u) iff the suffix s,(j)

exists in subtree of u, either j = 1 and c = A or st[j ~ 1] = c, and Sj is not part of any other

Iset at u. The partitioning of strings represented in the subtree of a node u may no longer

unique; however, any partitioning suffices.

Before generating pairs from an internal node u, the Isets at it's children are traversed

to detect and remove duplicate occurrences of any string. After this duplicate elimination

process, the pair generation algorithm is run as before.

To understand the logic behind this duplicate elimination method, note that duplicates of

a given pair (st, Sj) implies one of following cases:

1. if a maximal match occurs as multiple substrings in at least one of the strings. An

example of the latter case is shown in Figure 4.4;

2. if the two sequences share more than one maximal match.

In the first case, we can expect the string with multiple occurrences of the maximal match

substring to be represented in more than one Iset of it's children. The above mechanism will

detect and eliminate these duplicates. It cannot, however, guarantee the detection of duplicates

arising due to the second case because such sequence pairs may get formed under nodes that

do not share an ancestor-descendant relationship.

The algorithms for generating pairs from leaf and internal nodes are given in Figure 4.5.

Traversing Isets of all child nodes to eliminate multiple occurrences of a string can be imple­

mented to run in time proportional to the sum of the cardinalities of those Isets. A global

array M[1... n], one entry for each input string, is maintained. Let u be an internal node

currently being processed. The first time a string Sj is encountered, M[i] is marked with it's

identifier. Any future occurrence of Sj under any of it's child nodes is detected as a duplicate

occurrence by directly checking M[i\. A linked list implementation of the Isets allows the union

in step 3 of GeneratePairsFromlnternalNode to be computed using 0(|£|2) concatenation

operations. This restricts the overall space required to store Isets to O(N). The assumed

www.manaraa.com

53

Algorithm 3 Pair Generation from a GST based on Maximal Matches

GeneratePairsFromLeaf(Leaf Node: it)
1. Compute the Isets at u by scanning its labels.
2. Compute:

^ = U(c;,c,) W«) x V(ci,cj) a.t., q < <% or % = c, = A

GeneratePairsFromInternalNode(Internal Node: u)
1. Traverse all Isets of all children ui, U2, • • •, uq of u.

IF a string is present in more than one Iset THEN
all but one occurrence of it are removed.

2. Compute:
Pu — U(ttfc,u;) U(cj,Cj) iuk) x £-Cj {v>l), V(ufe,Xij), V(Ci,Cj) s.t.,

1 < k < I < q, Ci ^ Cj or Ci = Cj = X
3. Create all Isets at u by computing :

FOR Vcj e £ U {A} DO
iu) = Uuj. £ci{uk)j 1 Hkk <q

Figure 4.5 Algorithm for generating promising pairs from a generalized
suffix tree.

arbitrary orderings of the characters in S U {A} and the child nodes are to limit generating a

pair at u to one of its forms: (s, s') and (sz, s).

In summary, the sets of sequence pairs generated at an arbitrary leaf node u and an arbitrary

internal node v are given by:

Pu = {(s,s') | s € £Ci(u),s' G lCj(u),Ci,Cj G SU {A},((c, < cj) V (c, = Cj = A))}

= {(a,/) | s E G € 2U{A},& < !,((% ̂ V (q =(% = A))}

The overall clustering algorithm can be divided into a preprocessing phase followed by a

clustering phase, as shown in Figure 4.6. In the preprocessing phase, the GST for all n input

sequences is constructed and its nodes are sorted based on their string-depths. The clustering

phase is responsible for pair generation, alignment computation and management of clusters.

The following lemmas prove the correctness and run-time characteristics of the algorithm:

www.manaraa.com

54

Algorithm 4 The Sequence Clustering Algorithm

Input: Set S — {si, S2, • • • sn} of n sequences
Output: A partition C — {Ci, C2, • • • Cm} of S, 1 < m < n

1. Initialize Clusters:

VI < i < n, Ci i— {sj}, C <- CU Ci
2. G <— Construct the Generalized Suffix Tree of S
3. Radix sort nodes in G with string-depth > w in decreasing order of string-depth.
4. FOR each u in the sorted order DO

REPEAT
(s i , S j) <— generate next promising pair from u

C p 4 — F i n d (s i)

Cq <- Find(s j)

IF Cp + Cq THEN
score 4- Align(s i , s j)

IF score is significant THEN
Union(Cp, Cq)

UNTIL no more pairs to generate from u
4. Output C

Figure 4.6 Our sequence clustering algorithm. Steps 1 and 2 are collec­
tively called the "preprocessing phase" and the remainder of
the algorithm is called "clustering phase".

Lemma 1 Let u be a node with path-label a. A pair (s, s') is generated at u only if a is a

maximal match between s and s'.

Proof: At a leaf node u, all pairs of strings represented in its Isets are automatically right-

maximal by definition. If the algorithm generates a pair (s, s') at u, it is because the strings

are either from Isets representing different characters or from the Iset representing A. In either

case, a is a maximal match between s and s'. For an internal node it, the algorithm generates

a pair (s, s') only if (i) s and s' are from Isets either representing different characters or A, and

(ii) s and s' are from Isets of two different children of u. The former ensures a is left-maximal;

the latter ensures a is right-maximal. Thus a is a maximal match of s and s'. •

Corollary 1 The number of times a pair is generated is at most the number of distinct max­

www.manaraa.com

55

imal match substrings of the pair.

Proof: Follows directly from Lemma 1 and the fact that a pair is generated at a node at

most once. The latter is true because for any internal node the algorithm retains only one

occurrence of a string before generating pairs; whereas for any leaf node there can be at most

one occurrence of any string in its Isets. While this bounds the maximum number of times a

pair is generated, a pair may not be generated as many times. •

Note that the converse of Lemma 1 need not necessarily hold; i.e., due to duplicate elimi­

nation, some of the maximal matches between a pair may go undetected. This could, however,

happen only if the same pair was generated elsewhere because of a longer maximal match. In

other words, it is guaranteed that the algorithm guarantees each promising pair at least once,

as proved below.

Lemma 2 A pair (s, s') is generated at least once if it is a promising pair.

Proof: Consider a, a largest maximal match of length > w between strings s and s'. This

implies that there exists either a leaf or an internal node u with path-label a. Also 3 suffixes

s(z) and s'(z') represented in u's subtree that share a common prefix a. Thus if u is a leaf

node, then s G £Cl (u) and s' G lC2(u) such that c\ / C2 or c\ = C2 = A, implying that the

algorithm will generate the pair at u. If u is an internal node, then the fact that a is a largest

maximal match ensures that s and s' will occur , in Isets of different children, even after the

duplicate elimination process at u] these Isets will correspond either to different characters or

to A. Thus the algorithm will generate the pair at u. •

Lemma 3 The algorithm runs in time proportional to the number of pairs generated plus

O(N). The space complexity of the algorithm is O(N).

Proof: Each node at string-depth > w is processed exactly once. At an internal node, the

duplicate elimination process reduces the total size of Isets of all its children by at most a

factor of (|S| + 1). This is because a string is present in at most one Iset of each child node

and the number of children is bounded by (|£| + 1). The total size of all the Isets of all the

www.manaraa.com

56

children after duplicate elimination is bounded by the number of pairs generated at the node.

Taken together, this implies that the cost of the elimination process is bounded by a constant

multiple of the number of pairs generated at the node (assuming |E| is a constant).

The space complexity of the GST data structure is O(N). The space required by Isets

is proportional to the total number of Iset entries to be stored at all the leaf nodes, which is

O(N). This is because Isets at internal nodes are constructed from Isets of their children and

so do not require additional space. •

Asymptotically, the run-time is likely to be dominated by the time spent in computing

alignments, a fact that is corroborated by our experiments on large collections of genomic

fragments and ESTs (see Section 4.4). The alignment computation run-time can be reduced

by using the maximal match information that caused a pair to be generated to "anchor" its

alignment as shown in Figure 4.7. By anchoring, it is only required to compute alignment

over the two flanking extensions, thereby saving the alignment run-time. Further savings can

be achieved by extending this idea to include multiple maximal matches as part of the same

anchor, and in addition computing alignment over a band of diagonals [Fickett (1984)] within

each area of the table not covered by the anchored maximal matches. Anchoring may, however,

produce a sub-optimal alignment, as it is possible that none of the optimal alignments contains

an anchored maximal match.

In practice, partial clustering information may be available through alternative means for a

subset of input sequences prior to clustering. For example, it may be known that two sequences

were derived from ends of the same clone. Such "mate" information can be incorporated into

the clustering algorithm by initializing the clusters such that all mates are already clustered.

4.2.2.3 Space requirement

While the space complexity is O(N), the constant of proportionality is that of what is

required to store the GST and the Isets. Since there are at most N leaf nodes in the GST, the

total number of nodes is limited to 2 x N — 1. Because the above algorithm does a bottom-up

traversal of the tree, in which a parent is visited only after all its children are visited, the tree

www.manaraa.com

57

(a) (b)

Figure 4.7 (a) Dynamic programming table showing the computation of
an alignment between s and s' anchored on a maximal match
a. (b) Overlap patterns resulting from suffix-prefix alignment
computation and their corresponding paths in the table.

can be implemented as follows: The nodes are stored in an array in the depth-first traversal

order. Each node in the tree stores its string-depth, a pointer to its Isets and a pointer to the

rightmost leaf in its subtree. A leaf node's pointer points to itself. Given an internal node,

all its children can be accessed as follows: The node immediately next to it in the array is its

leftmost child. Its right sibling can be obtained by tracing the array entry next to its rightmost

pointer entry. If a node's rightmost pointer points to the same as its parent's, then it is the

rightmost child of its parent. The Isets need N entries, one for each suffix in the input. An

additional array of at most 2 x N — 1 entries is required to store the node identifiers in sorted

order of their string-depths.

Our implementation meeting the above storage requirements has a worst case constant of

«40 bytes for every input character. Because DNA sequences are double stranded, a sequence

should be considered both in its forward and reverse complemented form for overlaps. This

doubles the constant to %80 bytes for every input base. As an example, on a set of whole

genome shotgun sequences that are extracted with an 8x coverage over 1 M bp long genomic

stretch (i.e., for an input size of 8 megabases), this implementation requires 640 MB in the

www.manaraa.com

58

Parallel Construction

of GST

Preprocessing Phase

Pairwise

Alignment

On-demand Pair

Generation

Pair

Selection

Cluster

Management

Clustering Phase

Figure 4.8 Organization of the PaCE software.

worst case. In comparison, this is expected to consume 1 GB in implementations of previously

developed assemblers [Pop et al. (2002)].

4.3 A Space and Time Efficient Parallel Clustering Algorithm

In this section, we describe our parallel algorithm, PaCE, for clustering DNA sequences.

The algorithm has two main phases: (i) a preprocessing phase to construct a distributed

representation of the GST on the input sequences, and (ii) a clustering phase to generate

promising pairs, detect overlaps and perform clustering in parallel. The organization of the

PaCE software and the interactions among its components are depicted in Figure 4.8. The

design of the parallel algorithm follows a single master-multiple workers paradigm. The GST

construction involves only the worker processors.

4.3.1 Parallel Generalized Suffix Tree Construction

Serial construction of suffix trees is a well-studied problem with many linear-time con­

struction algorithms [Gusfield (1997a)]. There are algorithms for constructing suffix trees in

parallel under CREW/CRCW PRAM models of computing [Apostolico et al. (1988); Hari-

haran (1997)]. However, due to the unrealistic assumptions underlying the PRAM model, a

direct implementation of these algorithms is not practically useful. We developed the following

practically efficient algorithm, suited to exploit the distributed memory machine model. Our

algorithm constructs a distributed representation of GST in parallel over the set S of all input

www.manaraa.com

59

sequences and their reverse complements. Recall that the sum of lengths all sequences in S

is denoted by N, and the average length of an input sequence is denoted by I. Let p denote

the number of worker processors. Also, recall that the cutoff length for maximal matches in

promising pairs is denoted by w.

In the first step, given an integer parameter fc, all suffixes are sorted based on their k—length

prefixes. The value of k is chosen large enough to result in % ^ suffixes per processor after

sorting. Also, k < w, to suit purpose of the GST, which is identifying maximal matches of

length at least w. Empirically, a value of 11 was found appropriate for genomic data and many

EST data, for the range of processors tested (up to 1,024 processors). Sorting is achieved

as follows: The set S is initially partitioned such that each processor gets % —• nucleotides.

Through a linear scan, each processor partitions the suffixes of the local sequences into

buckets based on their first k characters. The suffixes are then globally redistributed such that

those belonging to the same bucket are in the same processor, and the number of suffixes per

N processor is % —.

Because the buckets correspond to the set of suffixes sorted based on their fc-length prefixes,

building one subtree for each bucket would construct the GST without the top portion with

path-label length < k. We perform a depth-first construction of each subtree by partitioning

the suffixes in its bucket into E sub-buckets based on their (k + l)th character, and recursively

subdividing each sub-bucket similarly until all suffixes separate or their lengths exhausted.

At worst-case, this procedure visits all suffixes to their full lengths, implying a run-time of

In the above approach, not all sequences that have suffixes in a local bucket may be available

in a processor's local memory before construction of the corresponding subtree. This is because

the initial sorting based on length prefixes may assign suffixes of sequences in different

processors to local buckets. The main challenge is therefore to ensure availability of all required

sequences needed to construct the local subtrees. Storing all sequences with suffixes in all local

buckets requires min{^~L,N} space in the worst case, which is not a viable solution. Our first

solution was to construct one subtree after another, such that before constructing each subtree,

www.manaraa.com

60

all sequences required for its construction are read from disk. Given that the disk latencies are

in the order of milliseconds (in the absence of a parallel I/O) as opposed to microseconds in fast

communication networks, a communication-based alternative is likely to be more practically

efficient. For this reason, we implemented the following communication-based solution for

subtree construction.

Each processor partitions its buckets into variable-sized batches, such that the sequences

required to construct all buckets in each batch would occupy O(y) space. Before constructing

a batch, all sequences needed for its construction are fetched through two collective commu­

nication steps — the first to request the processors that have the required sequences, and the

second to service the request. The processor that has a given sequence is determined in con­

stant time by recalling the initial distribution of S. A processor may exhaust all its batches, in

which case it continues to participate in the remaining communication rounds to serve requests

from other processors.

In the above communication based solution, each processor receives 0(y) characters from

all other processors per communication step. However, the size of the buffer used to send

sequences to other processors is not bound by O(y). This is because requests from different

processors may intersect, in the worst case over all of 0(y) local data; for which the likelihood

of happening increases with the number of processors. We resolved this issue by implementing

a customized Alltoallv, which ensures 0(™) size for the buffers by doing p— 1 sends and receives

instead of one collective communication,

4.3.2 Detecting Overlaps and Clustering In Parallel

Once a distributed representation of GST is constructed, the next phase detects overlaps

and performs clustering in parallel. We designed this clustering phase as a master worker

paradigm with one master and p worker processors. In addition to concerns typical to a single

master-multiple workers setup such as keeping the master processor available and all worker

processors busy, designing our master-worker model presents other unique challenges.

In a traditional master-worker model, the master processor generates and distributes work,

www.manaraa.com

61

while the worker processors process the work. This traditional model, however, is not appro­

priate for our clustering algorithm because the GST required to generate promising pairs (i.e.,

generate "work") is stored in a distributed fashion among the worker processors. Therefore, we

designed a variant of this traditional model in which the master processor serves as a necessary

intermediary only to maintain clusters and distribute work in a load balanced fashion; while

the worker processors in addition to processing the work (by aligning pairs) also generate work

(by generating pairs). Care must be taken that the rate of work generation is neither too fast

to result in a memory overflow (because pairs have to be stored in the master processor's local

memory until they are allocated for alignment computation) nor too slow to result in unnec­

essary processor wait times. Moreover, as not all generated pairs are necessarily selected for

alignment, it is necessary to regulate the rate of pair generation in order to maintain a steady

rate in alignment computation. Another cause of concern is that workers will start to run out

of pairs to generate from their portion of the GST dynamically as execution progresses. Hence­

forth, we call such workers passive while those that still have pairs to generate as active. In

the interest of maintaining parallel efficiency, it is necessary to keep passive workers busy com­

puting alignments. Also, allocating pending alignment computations to these passive workers

ahead of any active worker can help balance the work generated vs. processed dynamically.

With the above goals in mind, we designed an iterative solution with responsibilities as

shown in Figure 4.9. The master and worker processors interact iteratively until all promis­

ing pairs are generated and all alignments identified as necessary have been computed. The

master processor is responsible for maintaining the clusters, selecting and allocating pairs for

alignment computation, and load balancing. Each worker processor is responsible for generat­

ing promising pairs from its local GST portion in decreasing order of maximal match length,

computing alignments for pairs allocated by the master processor, and report the alignment

results to the master processor. To reduce communication setup costs, the worker processors

send pairs in batches instead of one pair at a time. Similarly, the master processor also allocates

pairs for alignment computation and collects their results in batches.

The master and workers store and maintain the following information.

www.manaraa.com

62

[AW] Allocate alignment work
Demand new pairs

[NP] Send new pairs
[AE] Send alignment results

• Generate promising pairs

• Compute pairwise alignments

Manage clusters

Load balancing

Information Stored:

Clusters

Information Stored:

/\ GST,

New JPair sJ3uf Idle-Workers

Pending-W orkJBuf

Master
Processor

A Worker
Processor

Master Network Worker p t

Figure 4.9 A single master-multiple workers design for detecting overlaps
and clustering in parallel, with responsibilities designated as
shown. Arrows indicate the direction of communication.

Information at the Master Processor:

• Clusters: the set of all sequence clusters maintained and updated dynamically. This is

implemented using the union find data structure;

• Pending JVorkJBuf : a fixed size buffer to temporarily store the pairs selected but not

yet allocated to any worker for alignment computation. This is implemented as a circular

queue; and

• Idle-Workers-, a list of all passive workers that do not have any alignment work allocated

to them. This is implemented as a queue.

Information at a Worker Processor pf.

GSTi: the local portion of GST; and

www.manaraa.com

63

» New-Pairs-Buf: a fixed size buffer to temporarily store newly generated promising

pairs that have not yet been sent to the master processor. This is implemented as a

circular queue.

The following messages are exchanged between the master and an arbitrary worker proces­

sor pi at a given iteration:

• AW: a new batch of alignment work allocated by master to #. The number of pairs

sent in each batch is user-specified and is fixed — we call this number the batch size and

denote it by b. AW is implemented as an array;

• r: the number of promising pairs that the master requests p, to send during its next

communication with the master. This number is variable and is determined dynamically

by the master as explained later;

• NP: a batch of new promising pairs sent by p t to the master processor. This is

implemented as an array;

• AR: a list of alignment results sent by pi to the master processor. The results are for

the alignments computed over the most recent batch of pairs allocated by the master to

Pi. AR is also implemented as an array;

Figures 4.10 and 4.11 detail the algorithms for the master and a worker processor, respec­

tively.

In each iteration, the master processor polls for messages from any of the workers. When

a message arrives from a worker p,, the master updates Clusters using the alignment results

that are satisfactory, scans the batch of newly generated pairs from p«, and adds only those

pairs for which alignments are necessary to Pending-Work J3uf. It then repeatedly extracts

batches of size b from Pending JVork-Buf, dispatching each batch to an idle worker. If all

workers become idle, then it signals the end of clustering. If no more idle workers remain

and if there is more work left in the P ending JV or k J3u /, then the next batch of b pairs are

allocated to pj. In the same message, the master also piggybacks the number of new pairs,

www.manaraa.com

64

Algorithm 5 Algorithm for Master Processor

1. Clusters 4 - Initialize such that each sequence is in a cluster of its own

Pactive 4 P

Idle-Workers <— 0
2. REPEAT

Blocking Receive until message from an arbitrary processor pi
NP <- new promising pairs
AR <- alignment results
IF NP = 0 AND Pi is active THEN

Mark pi as passive
Decrement pactive

Update Clusters based on AR
NP' <— Identify pairs in NP that need alignment computation
r <- mi»)® x ^ x 0,
Add NP' into Pending-WorkJBuf
FOR EACH pj € Idle-Workers DO

AR Dequeue min{b, |Pendingork-Buf |} pairs
IF AR / 0 THEN

Send AR to pj
Remove p3 from Idle-Workers

AR <r- Dequeue min{b, \Pending-Work-Buf\} pairs
IF AR 0 OR r > 0 THEN

Send (AR,r) to pi
ELSE

Add pi into Idle-Workers
UNTIL all workers become idle

3. Send termination signal to all workers
4. Output Clusters

Figure 4.10 The algorithm for the master processor. Bold font indicates
a communication step.

www.manaraa.com

65

Algorithm 6 Algorithm for a Worker Processor pi

1. AW <— Generate next b promising pairs from GSTi
2. AR 4- Compute alignments on AW
3. AW 4— Generate next b promising pairs from GSTZ

4. NP <— Generate next b promising pairs from GSTi
5. r <— b
6. REPEAT

Send NP and AR to master
AR <- Compute alignments on AW
(AW,r)t- Non-blocking Receive from master
REPEAT

Generate r pairs from GSTi and add to New-PairsJ3uf
UNTIL message arrives from master OR New-PairsJBuf is full
IF no message from master THEN

(AW,r)<r- Blocking Receive until master sends a message
NP •<— Extract r pairs, first from NewJPairs^Buf and then from GSTi if necessary

UNTIL no more promising pairs to generate from GSTi
7. REPEAT

AW <— Blocking Receive from master
AR <— Compute alignments on AW
Send AR to master

UNTIL master sends termination signal

Figure 4.11 The algorithm for each worker processor. Bold font indicates
a communication step.

r, that it expects to receive from p t in its next communication; r is given by: min{ j^p)| x

r-2— x b, \Pendm9-Work-Buf\ | where pactive denotes the number of active processors. The main
Pactive Pactive

idea is to request as many pairs as necessary to expect that b of them would be selected for

alignment computation. In other words, this load balancing strategy aims at regulating the

inflow of work so as to keep the outflow roughly constant.

In each iteration, a worker processor generates as many new promising pairs as requested by

the master processor and sends them in a message along with the results of the latest alignments

it computed. While waiting for the master to reply, the worker computes alignments on the

batch of pairs allocated by the master during the previous iteration. This is effective in masking

the communication wait time with computation. If alignment computation is completed before

www.manaraa.com

66

the master replies, then the workers processor resumes from its earlier state of pair generation

and generates fresh batches of promising pairs from its local GST portion until either a master's

reply arrives or its temporary store NewJPairs-Buf is full. If a worker becomes passive, it

keeps itself busy by computing alignments that the master allocated.

4.3.3 Software Availability

The PaCE software is implemented in C, and requires a multiprocessor cluster with support

for MPI (e.g., MPICH [Gropp et al. (1996)]). The software is copyrighted by Iowa State

University, and is available free for academic use.

4.4 Results and Applications

In this section, we present two different applications of our PaCE clustering method —

EST clustering and genome assembly.

4.4.1 EST Clustering

4.4.1.1 Quality Assessment

We validated the accuracy of PaCE clustering in the context of clustering ESTs using a

benchmark data set consisting of 168,2000 Arabidopsis thaliana ESTs [Zhu et al. (2003)]. It

was possible to create this benchmark data because the genome of Arabidopsis has already

been sequenced. The benchmark data was created by spliced alignment of the ESTs to their

cognate locations in the Arabidopsis genome, with subsequent clustering based on genome

location: ESTs that overlap in at least 40 bp to same or proximate genomic locations were

clustered. By this exercise, out of the 168,200 ESTs, 146,527 ESTs mapped to unique locations,

while the remaining 21,673 ESTs mapped to more than one cognate location. Each EST

aligning to more than one genome location was mapped to the cluster corresponding to the

location that gave the maximum alignment score with the EST. This procedure of generating

the benchmark clusters captures various interesting cases: (i) ESTs originating from the same

www.manaraa.com

67

gene axe clustered irrespective of their mRNA transcript source; and (ii) ESTs originating from

highly similar genes are separated. Chimeric ESTs were excluded from the benchmark.

Our procedure was to cluster the benchmark EST data with PaCE, and then run the CAPS

assembly program [Huang and Madan (1999)] on each resulting cluster, so that consensus

sequences (contig) representing the putative source mRNA transcripts can be generated for

the clusters output by PaCE. In this process, it is possible that a given cluster output by

PaCE gives rise to multiple contigs — this could happen because of either of the two following

reasons: (i) ESTs from alternatively spliced variants of the same gene are clustered together by

PaCE, or (ii) ESTs from similar/related but different genes are clustered together by PaCE. It

is, however, guaranteed that no EST is assembled into more than one contig. Once assembled,

the ESTs are grouped based on their corresponding contigs. The set of clusters resulting from

this grouping is henceforth referred to as the "PaCE clusters".

The platform for our PaCE experiments was a 30 node IBM xSeries machine, with each

node containing two 1.26 GHz Intel Pentium III processors and 2.25 GB RAM. The nodes

are interconnected by Myrinet. After running PaCE in parallel, the task of running the serial

CAP3 program on each individual output cluster was trivially parallelized by distributed the

clusters across processors initially and running multiple instances of CAP3 on each local set of

clusters.

We compared the PaCE clusters against the benchmark clusters. Given that CAP3 is also

one of the popular programs used for clustering ESTs [Liang et al. (2000)], we ran CAP3

directly on the 168,200 ESTs and compared the resulting CAP3 clusters against both PaCE

and benchmark clusters. Running CAPS directly on 168,200 ESTs was enabled by running it

on a computer with 3.25 GB RAM.

To assess quality as a function of data size, two subsets of clusters were extracted from the

benchmark clusters, such that the number of ESTs represented in the sets were «50,000 and

«100,000, respectively. The ESTs were input to the programs in no particular order.

A set of clusters is compared against the benchmark as follows: Let "test clusters" denote

either the PaCE clusters or CAP3 clusters. For both the test clusters and benchmark clusters,

www.manaraa.com

68

u Test /- Benchmark

(FP TP) ™

TN

Figure 4.12 Illustration of quality validation measurements True Positives
(TP), True Negatives (TN), False Positives (FP) and False
Negatives (FN). 'U' refers to the set of all possible pairs of the
input ESTs.

generate pairs of ESTs such that both ESTs in a pair are from the same cluster. Based on

the number of such pairs, the following measurements are defined; see Figure 4.12 for an

illustration. A pair generated from the test clustering is called a true positive (TP) if it is also

paired in the benchmark clustering; it is called false positive (FP) otherwise. A pair absent

from the test clustering is called a true negative (TN) if it is also absent from the benchmark

clustering; it is called false negative (FN) otherwise. Based on these measurements, another

set of quality measures are defined: Overlap quality is the ratio of the number of TPs to

the total number of unique pairs extracted from the clusters of both results, and is given by

OQ = Tp+FN+Fp', OQ is also known as Jaccard index [Jain and Dubes (1988)]. Specificity is

the fraction of correctly predicted pairs with respect to the total number of pairs predicted by

the test clustering, and is given by SP = Tp+Fp- Sensitivity is the fraction of correct pairs

(from benchmark) predicted in the test clustering, and is given by SE = Tp+FN • Overall

accuracy can be given by the correlation coefficient, which is given by:

T P x T N - F P x F N
—

N / (T P + F P) x (T N + F N) x (TP + FN) x (T N + F P) '

Ideally, the test clusters should exactly match benchmark clusters, i.e., OQ=SP=SE=CC=100%.

The results of assessing the quality of our software and CAP3 using the benchmark data

sets are shown in Table 4.1. Observing the measurements OQ, SP, SE and CC, our results

are very close to the results of CAP3, with CAP3 showing slightly better results than PaCE.

For either programs, the sensitivity is lower than the specificity and this is attributable to

www.manaraa.com

69

n 50,012 100,003 168,200
PaCE CAPS PaCE CAPS PaCE CAPS

OQ 86.87 89.32 84.84 89.13 88.87 90.35
SP 98.67 98.13 96.2 95.62 96.5 96.15
SE 87.91 90.87 87.78 92.92 91.83 93.74
CC 93.12 94.42 91.89 94.26 94.13 94.94

Table 4.1 Quality assessment of PaCE and CAPS clusters using clusters
generated from different portions of the benchmark data set.

the conservative nature of clustering criteria used. The results are based on the choice of the

quality threshold parameters of PaCE and CAPS, experimentally found to optimize specificity

and sensitivity simultaneously. For the PaCE run, we used the following alignment scoring

scheme: match = 2, mismatch = —2, opening gap penalty = 6, gap continuation penalty = 1.

Also, the cutoff length for maximal match length (w) was set to 40 bp, and an alignment was

deemed significant if its score is within 75% of a perfect matching score. CAPS was also run

under similar parameter settings for overlap percentage identity.

To enable a direct comparison with CAPS, we compared the PaCE clustering directly

against CAPS clustering, treating CAPS as a benchmark clustering and the PaCE clustering

as the test clustering, for the purpose of analysis. The measurements obtained for the 168,200

data collection are as follows: OQ—95.25%, SP—98.76%, SE=96.4% and CC—97.58%.

Quality Assessment using Clone Mates Information:

We also evaluated the effect of clone mate information on the quality of PaCE clustering.

This was achieved as follows: ESTs are grouped as pairs based on their source cDNA clones

[Seki et al. (2002)]. Following this, the benchmark clusters are updated by merging the clus­

ters that are linked by at least one clone mate pair. Note that it might happen that clone

information is not available for some ESTs in the input data, and/or there are ESTs that were

originally derived from non-overlapping cDNA transcripts of the same gene. In such cases, the

benchmark clustering is based only on spliced alignments. For the 168,200 ESTs, 16,992 pairs

of ESTs were linked with clone identifiers.

www.manaraa.com

70

n 50,012 100,003 168,200
w/o CM w/ CM w/o CM w/ CM w/o CM w/ CM

OQ 84.29 88.06 81.94 87.46 85.89 88.74
SP 98.71 97.75 96.28 94.98 96.43 94.94
SE 85.23 89.88 84.62 91.7 88.71 93.14
CC 91.21 93.72 90.26 93.32 92.49 94.04

Table 4.2 Quality assessment of PaCE clusters with and without clone
mates (CM) information, against the Arabidopsis benchmark
clusters.

PaCE clustering allows for input with clone mate identifiers. Using the clone mate infor­

mation, updated PaCE clusters were obtained in the following manner for the different subsets

of the benchmark data: cluster the benchmark data using PaCE with the added input of clone

mates; run CAP3 on each resulting cluster and group ESTs based on contigs. Clone mates

information was also passed as input to CAP3 so that the final clustering is with the clone

mates information. The results were compared against the corresponding benchmark clusters.

To measure the improvement in quality of clustering, we also compared the PaCE clusters

obtained without clone mates information against the new benchmark clusters.

The results for 168,2000 ESTs and its subsets are shown in Table 4.2. It can be observed

that on the 168,200 data set, the clone mate information was instrumental in improving the

overall CC from 92.49% to 94.04%.

4.4.1.2 Performance Evaluation

We first studied the performance of the PaCE software on the same 168,200 Arabidopsis

EST collection used in our quality assessment experiments. The total run-times as a function of

the number of processors for various data sets are shown in Figure 4.13a. For these experiments,

we used a batch size of 60. As can be observed, the run-times show near perfect scaling with

the number of processors. We are also interested in the growth of run-time as a function of the

data size for a fixed number of processors. While the memory required scales linearly with the

problem size, the total run-time cannot be analytically determined and depends on the input

www.manaraa.com

71

8000

7000

.6000
"c
85000
s
•- 4000

I
73000

°"2000

1000

°0 10 20 30 40 50 60
Number of processors

(a)

Run-time vs. Number of ESTs for p=60
1000

800

m 600

v 400

200

0.5
Number of ESTs ,5

x 10'

Run-time vs. Number of processors

Number of ESTs=10,000
Number of ESTs-20,000
Number of ESTs=40,000
Number of ESTs=80,000
Number of ESTs=168,200

Figure 4.13 Parallel scaling of PaCE clustering.

data set. These run-times for various data set sizes are shown in Figure 4.13b.

A subdivision of the run-times into the time spent on various components of the software

for 20,000 ESTs is shown in Table 4.3. Asymptotically, the largest contributor to the total

run-time is the time spent in performing pairwise alignments during the clustering phase. The

GST construction phase scales linearly (treating the average length of an EST . to be a large

constant). The clustering phase is expected to take quadratic run-time. In our approach,

the time spent in pairwise alignments is significantly reduced because our algorithm (i) avoids

unnecessary duplicates in generating promising pairs and (ii) processes high-quality promising

pairs first which has the effect of eliminating other promising pairs from further consideration.

Because of these reasons, for smaller data sizes, the alignment phase runs faster than the GST

construction phase as seen from Table 4.3.

Figure 4.14a shows the total number of promising pairs generated as a function of the data

size. Observe that the alignment work is done for only a small portion of the pairs generated

(for e.g., 22% for the 168,200 data set). This illustrates the reduction in work achieved by

processing the pairs in the decreasing order of maximal common substring length, as opposed

to processing them in an arbitrary order. Also note that the number of aligned pairs that

contribute to merging of clusters is linear in n, as at most n — 1 union operations can be

www.manaraa.com

72

p Partitioning Construction Sorting Clustering Total
of GST Nodes Phase Time

2 28 715 30 271 1044
4 13 250 10 102 375
8 5 110 4 50 119

16 2 57 2 26 87
32 1 36 1 15 53
60 1 27 1 10 39

Table 4.3 Time (in seconds) spent in various components of parallel EST
clustering as a function of the number of processors (p) for 20,000
ESTs.

performed. Because of the nature of master-slave interactions during the clustering phase, the

number of pairs that are actually aligned varies slightly as the number of processors changes.

We found the variation to be insignificant.

Figure 4.14b shows the number of clusters as a function of the cluster size for 168,200 ESTs.

About 44% of the clusters formed contain a single EST. A few clusters contain as many as

several hundred ESTs (e.g., there are 34 clusters with size above 200). This non-uniformity

in the size distribution in clusters is the primary reason why fragment assembly software has

large memory and run-time requirements when applied to EST clustering.

The effect of varying batch size on the run-time of the clustering phase of PaCE is shown

in Figure 4.15. When the batch size is small, the master and workers exchange messages

more frequently, thereby making the communication overhead dominant. With a large batch

size, EST clusters are less frequently updated, causing alignment of more promising pairs than

necessary. Empirically, we found the optimal batch size for the benchmark data set to be in

the range of 20—60. Note that this optimal range may vary depending on the size of input,

the number of processors, and the speed of network interconnect of the underlying parallel

platform.

Mouse EST Clustering

For the purpose of demonstrating the capability of large-scale clustering, we also evaluated

www.manaraa.com

73

« u

c
S 7

Pc

! 5
0)
t o 4
'3 a 3-

0
I 3
Z

Number of pairs generated vs. Number of ESTs

•Aligned and accepted

•Aligned and rejected

•Unaligned

Cluster size distribution for 168,200 Arabidopsis ESTs

10,000 20,000 40,000 80,000 168,200
Number of ESTs

(a)

50 100 150
Number of ESTs in cluster

(b)

Figure 4.14 (a) Promising pair generation and alignment statistics of
PaCE, as a function of data size, (b) The number of clus­
ters as a function of the cluster size for 168,200 ESTs.

200

the performance of PaCE clustering on the largest available mouse EST data in GenBank as

of April 2006. This data, after cleaning and polyA tail removal, comprised of 3,783,854 ESTs.

We conducted this large-scale experiment on the IBM BlueGene/L (BG/L) supercomputer

[Adiga et al. (2002)] at Iowa State University. Each BG/L node contains two 700 MHz IBM

PowerPC architecture-based processors and a 512 MB RAM. There is no additional node-level

storage available in the form of any swap space. The nodes are connected through a 3D-torus

network. Each dual-processor node was used in co-processor mode, i.e., one processor was used

for computation and the other processor was used for communication. For this reason, we will

use "nodes" and "processors" synonymously.

Tables 4.4 and 4.5 show the total and phase-wise run-times respectively, as a function of

both the input and processor sizes. Both these tables show the range of processors on each

input up to which the run-time scales linearly, and beyond which the problem size becomes

too small for the processor size. It can be observed that as many as 512 processors can be used

efficiently for even an input containing as few as 100,000 ESTs.

The increase in run-time with input size in Table 4.4 conforms with the asymptotic quadratic

behavior expected on EST data. Also, observe that the run-time for clustering phase dom-

www.manaraa.com

74

Clustering phase run-time vs. Batch size
40

Number of ESTs=20,000, p=32 |

o

10,
0 20 40 60 80 100 120

Batch size in number of pairs

Figure 4.15 PaCE run-time as a function of the number of pairs allocated
at a time for pairwise alignment.

inates the total run-time for larger input sizes. Figure 4.16 shows the number of promising

pairs generated by PaCE based on a minimum cutoff maximal match length of 30 bp, as a

function of the input number of ESTs. As shown in the figure, the number of pairs is expected

to grow quadratically with the number of input ESTs. Figure 4.16 also shows that alignments

are computed for only «10-12% of the generated pairs, demonstrating the significant run-time

savings achieved through the PaCE heuristic techniques.

We evaluated the effectiveness of the master-worker paradigm of the PaCE algorithm as

follows: Figure 4.17a shows the average run-time (as a, percentage of the total run-time) spent

by a worker processor waiting for the master processor without performing any computation.

As can be expected, this idle time decreases with increase in input size for a given processor

size. Figure 4.17a shows that the idle time ranges from 7% to 22% on the input tested. We also

evaluated idle time on the master processor to check its availability to the worker processors.

Figure 4.17b shows that the master processor is available for at least 80% of the run-time, for

even a small input size of 100,000 ESTs on as many as 1,024 processors. This suggests that

the master processor is not a bottleneck even as the number of processors is increased to the

order of thousands.

The PaCE software is used by the NSF funded PlantGDB project (http://www.plantgdb.org),

http://www.plantgdb.org

www.manaraa.com

75

Total run-time

Number
of ESTs

Number of processors Number
of ESTs 32 64 128 256 512 1024
100,000 80 43 20 11 6 5
250,000 225 114 50 25 14 11
500,000 275 146 74 34 25

1,000,000 281 138 78 46
2,000,000 421 272 153
3,783,854 1198 574

Table 4.4 PaCE clustering run-time (in minutes) on «3.78 million mouse
ESTs using 1,024 IBM BlueGene/L processors.

GST construction phase run-time Clustering phase run-time

Number
of ESTs
100,000
250,000
500,000

1,000,000
2,000,000

3,783,854

Number of processors
32 64 128 256 512 1024
44 25 11 6 3 2

110 56 29 15 8 6
123 63 32 16 12

135 69 38 22
174 91 51

248 158

Number of processors
32 64 128 256 512 1024
36 18 9 5 3 3

115 58 22 11 6 5
152 83 42 18 13

146 69 40 24
247 181 102

950 416

Table 4.5 Phase-wise run-time (in minutes) of PaCE clustering on «3.78
million mouse ESTs using 1,024 IBM BlueGene/L processors.

which has EST clusters for «100 plant EST collections. The sizes of these collections range

from as small as a few thousands to over a million rice ESTs.

4.4.2 Clustering for Genome Assembly

Our next application of PaCE was on the problem of genome assembly. The problem

of genome assembly primarily relies on pairwise overlap information among an input set of

fragments sequenced from the target genome. Despite technological advances, however, genome

assembly is still largely treated as a problem of serial computers that result in long run-times

and exorbitant memory requirements. (See Sections 3.1.2 and 3.2 for more details.)

As earlier mentioned in Section 3.1.2, a strategy of clustering before performing the as-

www.manaraa.com

76

y oo -,

l'i omising pair statistics

1 2000 -
% • Aligned and Accepted

• MiijneU HT I Fr-|CrteU « e
Q g 1500 - • • Unaligned
« a

o - E
* S 1000

E
i 500 500

0 M w- F1 ' is
Humber of ESTs

Figure 4.16 Number of promising pairs generated vs. number of pairs
aligned by PaCE while clustering «3.78 million mouse ESTs.

sembly has several advantages, if: (i) clustering can break a large problem size into numerous

independent subproblems for assembling; (ii) clustering requires less memory than assembly

as otherwise there will be no memory advantage in using clustering prior to assembly, and the

problem sizes solvable using the clustering based assembly approach cannot be larger than the

direct assembly approach; and (iii) clustering provides a faster alternative to detect overlaps

and consumes less run-time — the latter can be expected because it involves lesser work than

assembling (i.e., its task is only to group the sequences that belong the same contig together,

without actually assembling the contig). All the above desired properties are met by the PaCE

clustering method.

We applied PaCE on maize gene-enriched genomic fragments. Gene-enrichment, as de­

scribed in Section 2.2.2.3, is a technique by which gene-rich portions of a genome are selec­

tively sampled. Gene-enrichment is ideal for the use of clustering based approach to assembly

because of the following reason: Because of selectively sampling the gene-rich portions of the

genome and repeat masking, an initial assembly of gene-enriched fragments generates a large

number of contigs that correspond to the many sparsely located genomic stretches from which

www.manaraa.com

77

Idle time of worker processors
25

•B 20

1
•S 15

as
8.10

.1
•o

• #ESTs=100,000

« #ESTs=250,000

—- #ESTs=500,000

—e—#ESTs=1,000,000
1 #ESTs=2,000,000

#EST s=3,783,854

/
/

200 400 600 800 1000
Number of processors

1200

(a)

Figure 4.17

100
Idle time of the master processor

90
<D
E

Î
•S 80

<0
1

<D
I
œ
*o

70

60

50.

• #ESTs=100,000

-e- #ESTs=250,000

—-#ESTs=500,000

—o— #EST s=1,000,000

- » #ESTs=2,000,000

—#ESTs=3,783,854

200 400 600 800 1000 1200
Number of processors

(b)

Idle run-time characteristics of PaCE clustering of the mouse
EST data, (a) Average percentage idle time for each worker
processor, (b) Percentage idle time of the master processor.

the fragments were originally derived [Emrich et al. (2004)]. Thus, we can expect clustering

to partition the input fragments into "clusters" corresponding to each of the enriched genie

regions. These individual regions can be assembled post-clustering using any serial assembler

of choice [Kalyanaraman et al. (2006b)]. While our PaCE clustering framework supports space

optimality, run-time efficiency and massive parallelism, the assembly task is trivially paral­

lelized by distributing the clusters across multiple processors and running multiple instances

of a serial assembler in parallel. The space and other limitations of these assemblers will now

not be a limiting factor because of the relatively small size of each cluster.

4.4.2.1 Data

Two gene-enrichment methods, Methyl-Filtrated (MF) [Rabinowicz et al. (1999)] and High-

Cot (HC) [Yuan et al. (2003)], were used to sequence the maize genome, as of April 2005. The

maize genomic data composed of 3,124,130 fragments with total length over 2.5 billion bp.

This includes 852,838 MF and HC fragments. Also available are fragments from WGS and

BAC sequencing. A summary of the entire maize data is provided in the first three columns

of Table 4.6.

www.manaraa.com

78

Before Preprocessing After Preprocessing
Fragment Number of Total length Number of Total length

Type Fragments (in millions) Fragments (in millions)

MF 411,654 335 349,950 288
HC 441,184 357 427,276 348

BAG 1,132,295 964 425,011 307
WGS 1,138,997 870 405,127 309
Total 3,124,130 2,526 1,607,364 1,252

Table 4.6 Maize genomic fragment data types and size statistics:
Methyl-filtrated (MF), High-Cot (HC), Bacterial Artificial Chro­
mosome (BAC) derived, and Whole Genome Shotgun (WGS).

As with any other assembler, the first step in our framework is to screen the input fragments

for known repeats and vector sequences. This preprocessing step was designed and performed

by Emrich et al [Emrich et al. (2004)]. A brief overview of this step is as follows: raw fragments

obtained from sequencing strategies can be contaminated with foreign DNA elements known

as vectors, which are removed using the program Lucy [Chou and Holmes (2001)]. In addition,

a database of known and statistically-defmed repeats was designed, and all fragments were

screened against it. The matching portions are masked with special symbols such that our

clustering method can treat them appropriately during overlap detection. The last two columns

in Table 4.6 show the results of preprocessing the data using our repeat masking and vector

screening procedures. As expected, preprocessing invalidates a significant number of shotgun

fragments («60—65%) because of repeats, while most of the fragments resulting from gene-

enrichment strategies are preserved. An efficient masking procedure is important because

unmasked repeats cause spurious overlaps that cannot be resolved in the absence of paired

fragments spanning multiple length scales. Furthermore, it provides a computational means

to preferentially assemble non-repetitive regions of the genome that may be gene-enriched.

This framework, illustrated in Figure 4.18, is a divide-and-conquer strategy that reduces the

task of assembling one large set of fragments to the task of first identifying clusters containing

genomic neighboring fragments and then assembling each cluster individually.

www.manaraa.com

79

Contig

Input
Fragments Clustering Assembly Preprocessing

Serial
Assembly

Parallel
Clustering

Serial
Assembly

Serial
^Assembly

Repeat
Masking,

Vector
Screening

Figure 4.18 Illustration of our cluster-then-assemble framework.

4.4.2.2 Results and Validation

The results of applying our parallel genome assembly framework on the entire maize data

is as follows: Cleaning the 3,124,130 fragments downloaded from GenBank took 1 hour by

trivially parallelizing on 40 processors of an IBM xSeries cluster with 1.1 GHz Pentium III

processors and 1GB RAM per processor. The PaCE clustering method partitioned the resulting

1,607,364 fragments (over 1.25 billion bp) in 102 minutes on 1,024 nodes of the BG/L, with

the GST construction taking only the first 13 minutes. We used CAP3 for assembling the

fragments in each resulting cluster. This assembly step finished in 8.5 hours on 40 processors

of the IBM xSeries cluster through trivial parallelization.

Performance Evaluation of PaCE clustering

We studied the performance of our PaCE clustering algorithm on varying processor sizes

ranging from 256 to 1,024. In what follows, we first present the performance results for the

preprocessing phase, followed by the entire algorithm (including the clustering phases).

For evaluating the preprocessing phase (GST construction), experiments were conducted

on two subsets of the maize data, with sizes 250 and 500 million bp that comprised 322,009 and

649,957 fragments, respectively. Figure 4.19 shows the parallel run-times and their breakdown

into communication and computation times, all of which show linear scaling with both processor

and input sizes.

We report the performance of the entire PaCE clustering algorithm, with its single master-

www.manaraa.com

80

Run-time of GST construction phase (250 million) Run-time of GST construction phase (500 million)

Communication
I [Computation

« 400

<u
E 300

3 200

256 512 768 1024
Number of processors

(a)

1400
Communication
Computation

« 800

E 600

256 512 768 1024
Number of processors

(b)

Figure 4.19 Parallel run-times for constructing GST on inputs of sizes:
(a) 250 million, and (b) 500 million bp.

multiple worker implementation on the IBM BlueGene/L supercomputer. The results are

shown in Figure 4.20. The results show a better scaling for the larger (500 million) input

than the smaller (250 million) input. Upon increasing the number of processors from 256 to

1,024, we observe relative speedups of 2.6 for the 250 million input and 3.1 for the 500 million

input. Further investigation revealed that the percentage average idle time for the processors

increased from 16% on 256 processors to 26% on 1,024 processors on the 250 million input, and

from 9% to 16% for the 500 million input — indicating that more processors can be deployed

while maintaining efficiency if the problem size is larger. Note that a full sequencing project

will generate over 22 billion bp (30 million fragments each about 750 bp), on which tens of

thousands of processors can be utilized with our scheme.

Figure 4.20b shows the number of promising pairs generated as a function of the input size.

This figure reinforces the effectiveness of our promising pair, clustering and pair generation

heuristics in significantly reducing the number of alignments computed. For the entire maize

data, which has 1,607,364 fragments of total size 1.252 billion bp, only about 40% of the pairs

generated are aligned. However, less than 1% of the pairs aligned contributed to merging of

clusters, indicating the presence of numerous medium-sized («100) repetitive elements that

www.manaraa.com

81

Run-time for clustering phase
1000r

800

8 <K 600 h

<D

E 400

200

Input Size
Input Size

250 million
500 million

&0 400 600 800 1000
Number of processors

1200

(a)

, ,J Q 7 Number of promising pairs generated

§
o>
CO

Q-3

|2

o

s1
E

00 Unaligned
[^Aligned and rejected
1 I Aligned and accepted

250 500 1000 1252
Input Size (in million nucleotides)

(b)

Figure 4.20 (a) Total parallel run-time for the entire clustering algorithm
excluding that of GST construction, (b) The number of pairs
generated, aligned, and accepted as a function of input size.

survived initial screening procedures. Growth in the number of promising pairs is a direct

reflection of the expected worst-case quadratic growth in the maize data. The number of

promising pairs generated and the relative savings in the alignment work are highly data

sensitive. For example, recall that only 22% of generated pairs were aligned on the Arabidopsis

EST data, as reported in Section 4.4.1.2.

Biological Validation

The biological validation of the maize gene-enriched assembly was performed by Emrich

et al. [Emrich et al. (2004); Fa et al. (2005)]. A summary of the validation results are as

follows: Our assembly resulted in a total of 163,390 contigs formed by two or more input

fragments, and 536,377 singletons. Singletons are fragments that do not assemble with any

other fragment because of sharing no overlap and/or having a high repetitive content that was

masked during preprocessing. On an average, each cluster assembled into 1.1 contigs; given

that the CAP3 assembly is performed with a higher stringency, this result indicates the high

specificity of our clustering method and its usefulness in breaking the large assembly problem

into disjoint pieces of easily manageable sizes for conventional assemblers. The overall size of

our contigs is about 268 million bp, which is roughly 10% of the entire maize genome. Upon

validation by Emrich et al. using independent gene finding techniques, it was confirmed that

www.manaraa.com

82

our contigs span a significant portion (« 96%) of the estimated gene space. The results of

our assembly can be graphically viewed at http://www.plantgenomics.iastate.edu/maize. For

further biological details on our on-going effort to assemble the maize genome and a thorough

discussion of the results on an earlier version of maize data with less than a million fragments,

see [Fu et al. (2005)].

The PaCE clustering framework for gene-enriched genome assembly has allowed us to focus

on developing parallel methods while benefiting from and not duplicating the painstakingly

built-in biological expertise of current assemblers. Furthermore, this allows one to generate

assemblies consistent with what would have been generated by any conventional assembler,

except that the problem size reach and speed of the assembler is significantly enhanced.

Our strategy is applicable even for conventional whole genome shotgun assembly. This is

because gaps invariably occur in sampling, or through repeat masking, or owing to the difficulty

in sequencing certain regions of the genome. As a result, an initial assembly is expected to

consist of a large number of contigs that are subsequently scaffolded, followed by targeted

biological experiments to fill in the gaps. As an example, in the human genome project [Venter

et al. (2001b)], using whole genome shotgun sequencing resulted in an initial assembly with

over 221,000 contigs, and the largest contig spanned only under 2 million bp of the genome.

http://www.plantgenomics.iastate.edu/maize

www.manaraa.com

83

CHAPTER 5. DETECTION OF LTR RETROTRANSPOSONS

In the previous two chapters, we described algorithms and software for performing sequence

analysis that enable the discovery and understanding of genes, of their related sequences that

constitute the transcriptome of an organism, and of the entire genome itself. Besides genes,

there are other substructures within a genome that are subjects of active research topics.

Identifying these substructures within a genome is the first step towards understanding their

biological role. Comprising a majority of these genomic patterns are the repeat elements, which

are, as the name suggests, recurrent genomic sequence patterns. In this chapter, we focus on

the problem of identifying one of the most abundant classes of genomic repeat elements called

the LTR retrotransposons.

Retrotransposons are DNA sequences that reside within cells of a host organism, copy­

ing and inserting themselves into the host genome. Studies have revealed their ubiquity in

many eukaryotic organisms, both plants and animals — they constitute more than 50% of the

maize genome [Meyers et al. (1998); SanMiguel et al. (1998, 1996)], up to 90% of the wheat

genome [Flavell (1986)] and at least 45% of the human genome [Lander et al. (2001)]. LTR

retrotransposons form a special class of retroelements that are typically characterized by two

long terminal identical repeat sequences, one at the 5' end and the other at the 3' end of the

inserted retrotransposon; these terminal repeats are referred to as Long Terminal Repeats or

LTRs. LTR retrotransposons were originally discovered in maize and tobacco [Grandbastien

et al. (1989); Johns et al. (1985); Varagona et al. (1992)], and are now known to be abundant

in numerous complex eukaryotic plant (e.g., barley, rice, maize, wheat, etc.) and animal (e.g.,

Drosophila, human, mouse, etc.) genomes.

Ever since their discovery, LTR retrotransposons have been a topic of great research in­

www.manaraa.com

84

terest to biologists. Understanding the behavior of these retroelements has been key to many-

significant advances in molecular genetics and functional genomes [Charlesworth et al. (1994);

Feschotte et al. (2002); Ganko et al. (2003); Miller et al. (1998); SanMiguel et al. (1996)].

Because of their mobile nature, retrotransposons play key roles in genomic rearrangements

[Bennetzen (1996); Feschotte et al. (2002); Kim et al. (1998)] and in the evolution of genes and

genomes [Ganko et al. (2003); Jordan and McDonald (1999); Vicienta et al. (1999); Wessler

et al. (1995); White et al. (1994)]. LTR retrotransposons have also been identified to be sources

of spontaneous and induced mutations and are an important subject in studies relating to mu­

tations and genetic variations [Hirochika et al. (1996); Kidwell and Lisch (1997); Varagona

et al. (1992)]. The transposition mechanism by which LTR retrotransposons copy and relocate

involves an RNA-intermediary — a copy of the retrotransposon is made into an RNA molecule,

which is then inserted back as a DNA molecule in another location of the host genome, with

the aid of an enzyme called reverse transcriptase. This mechanism being highly similar to

the transposition mechanism of retroviruses such as the HIV has contributed to a continued

interest in retrotransposon research [Bushman (2003); Coffin et al. (1997)]. The structural

attributes of LTR retrotransposons provides significant insights into species evolution because

of the following property: the 5' and 3' LTRs of a retrotransposon are completely identical

when the retrotransposon inserts itself, but can undergo mutations and become increasingly

divergent with time [Peterson-Burch et al. (2004); Xiong and Eickbush (1990)].

The aforementioned applications and many others have been contributing to a sustained

research interest in LTR retrotransposons. Also with the continued advancement in sequencing

technology and with various new large-scale genome sequencing projects of complex eukaryotic

organisms either currently underway or finished, understanding retrotransposons and their

biological role in all these genomes has become imperative in furthering research for functional

and molecular genomics.

In this research, we propose an efficient algorithm for de novo identification of full-length

LTR retrotransposons with key emphasis on quality and performance [Kalyanaraman and

Aluru (2006)]. The main contributions of this research are the following:

www.manaraa.com

85

Jg gg Dmin S (&3 ^s) ^ &max 63
I I Lmin ^ (^5 &ô); (^3 ~~* £>3) ^ Lmax J

Host
(^]^|T(?... CL4 J P B S . . . g a g . . . p o l . . . e n v . . . P P T] [TG • • • C^jC^^)

Genome
5'TSD 5'LTR —Internal retrotransposon region—3'LTR 3' T S D

Figure 5.1 The structure of a full-length LTR retrotransposon.

• an efficient algorithm for quickly generating high-quality candidates, significantly reduc­

ing the search space. The algorithm has a run-time complexity proportional to the input

size plus the number of candidates (i.e., amortized constant time per candidate);

• a thorough alignment-based evaluation of candidates using standard dynamic program­

ming techniques that guarantees optimality in the alignment score;

• support for a robust parameter set encompassing both structural constraints and quality

controls; and

• an implementation of our algorithm that can run on both serial and parallel computers.

Preliminary validations of our software indicate better quality results and significantly

faster run-times when compared to previously developed software. For example, our software

took 10 minutes on the yeast genome (on a 1.1 GHz Pentium III) and made better predic­

tions than LTR..STRUC [McCarthy and McDonald (2003)], which took 210 minutes (on a 1

GHz Pentium III) despite not computing rigorous alignments. Furthermore, the parallel im­

plementation of our algorithm can be used to further reduce the run-time in proportion to the

number of processors used. Our approach also provides a flexible framework to incorporate

more LTR-specific improvements with minimal changes to the algorithmic core.

5.1 Problem Description and Related Work

The structure of a full-length LTR retrotransposon has been well characterized in literature,

and is illustrated in Figure 5.1. A full-length LTR retrotransposon is characterized by an

www.manaraa.com

86

internal region containing the retrotransposon that is flanked by two identical repeats (5' and 3'

Long Terminal Repeats or LTRs), and two identical short repeats 5-6 bp long (5' and 3' Target

Site Duplications or TSDs) that are a result of a duplication event when the retroelement

inserts itself into the host genome. The internal retrotransposon region contains the following

sequences from 5' to 3': Primer Binding Site (PBS) is a region complementary to a tRNA 3'

terminal sequence used during reverse transcription at a later stage of the retroelement's life

cycle; the gag region is a gene that codes for a capsid-like protein; the pol region contains genes

coding for protease, integrase and reverse transcriptase enzymes; the env region contains the

gene coding for an envelope protein; and the 3' end of the retroelement contains a purine-rich

sequence called the Poly-Purine Tract (PPT).

For computational detection, these structural attributes can be modeled as follows:

LI Similarity Constraint: The 5' and 3' LTRs show a good sequence homology that

can be demonstrated by a high-scoring global alignment between them. While the LTRs

are identical when a retroelement inserts into a host genome, they may accumulate

mutational variations — hence the need for computing an alignment.

L2 Distance Constraint: The starting positions of the 5' and 3' LTRs are at least Dmin

bp and at most Drnax bp apart along the genome. The value for Dmin (alternatively,

Dmax) is given by the sum of minimum (alternatively, maximum) expected lengths of

an individual LTR and an internal retrotransposon region; biologically reasonable values

are: Dmin under 1,000 bp, and Drnax in the range [10000,15000] bp.

L3 LTR motif: LTRs are typically known to start with T G and end with C A .

L4 Target Site Duplications: The 5 (or 6) bp immediately left of the 5' LTR are highly

similar, if not identical, to the 5 (or 6) bp immediately right of the 3' LTR. This repeat

is called a Target Site Duplication or a TSD because it corresponds to the sequence

duplicated in the host genome at the time and site of the retrotransposon's insertion.

L5 Other Signals: The region between a 5' and 3' LTR pair contains a series of spe­

cial purpose genes and sequences corresponding to the inserted retrotransposon: primer

www.manaraa.com

87

binding site (PBS), gag, pol, env, and Poly-purine tract (PPT).

Henceforth, we refer to the above attributes also by their corresponding labels LI through

L5.

While the sequence identity expected between 5' and 3' LTRs of a retrotransposon could

vary across different retroelement families, typically ranging between 70%-100% [Kim et al.

(1998)], a high identity (>90%) has been observed in most cases [Kim et al. (1998); Promislow

et al. (1999)]. Because of the strong homology expected between 5' and 3' LTRs, they are also

expected to contain long exact matches. Thus, identification of exact matching repeats serves

as a good starting point for LTR retrotransposon detection. Repeat detection is a well studied

problem and a number of excellent programs are already available. These include RepeatMasker

[Smit and Green (1999)], REPuter [Kurtz et al. (2001); Kurtz and Schleiermacher (1999)] and

RECON [Bao and Eddy (2002)]. LTR retrotransposons, on the other hand, are uniquely

characterized by L2. Therefore, the repeats identified by general purpose repeat identification

software must be screened to eliminate repeats that do not satisfy L2. For instance, the

SMaRTFinder program [Morgante et al. (2002)] designed for retrotransposon detection utilizes

REPuter for repeat detection prior to screening for additional LTR features. The problem with

this approach is the extra run-time cost incurred in initially generating repeats that are either

too close or too far apart to be part of any valid LTR retrotransposon — an issue for highly

repetitive genomes. Even on genomes with abundant LTR retrotransposon content, there could

be an LTR sequence that is common across numerous members of the same retrotransposon

family, and generic repeat finding tools will generate all pairs of these LTRs before invalid

pairs are sieved out.

A more efficient solution is to build software that is specifically designed for LTR retro­

transposon detection, and LTR_STRUC [McCarthy and McDonald (2003)] is the only available

program that is so designed. It has been successfully used for detection of full-length LTR retro­

transposons in Oryza sativa [McCarthy et al. (2002)], Mus musculus [McCarthy and McDonald

(2004)] and Drosophila melanogaster [Franchini et al. (2004)]. The underlying algorithm, how­

ever, is a brute-force approach that results in unnecessarily long run-times, which could be

www.manaraa.com

88

problematic for large genomic sequences. A more efficient algorithm will significantly reduce

the cost of identifying potential LTR pairs, and the resulting time savings could be utilized to

improve prediction quality.

The underlying algorithm in LTRSTRUC can be viewed as a two-step procedure: (i)

detect all pairs of genomic locations that both satisfy L2 and are starting positions of two

highly similar substrings (or "seeds") of a particular fixed length w (say 40 bp). Each such pair

can be considered a "candidate pair" ; (ii) for each candidate pair generated, extend the seeds in

either direction as long as the alignment continues to satisfy LI. The resulting aligning regions

are reported as a full-length LTR retrotransposon. Alignment of an extension is computed by

a simple greedy strategy that aligns longer exact matches before aligning the remainder of the

region with shorter matches. This method does not guarantee a best possible alignment of the

predicted LTRs, and therefore has the potential danger of missing some LTR pairs. Ideally,

an alignment method that computes a combinatorially optimal alignment score is desirable to

ensure that no such genuine LTR pairs are missed.

Candidate pairs are generated by the following brute-force approach: Let s denote the

input genomic sequence of length n. Walk along s and for each position i, 1 < i < n, scan

all positions j such that (i + Dmin) < j < (i + Dmax). For each (-<, j)-pair, compute the

percentage identity of the two w—length substrings starting at i and j. If the identity is above

the similarity threshold (say 70%), then the pair (i, j) is reported as a "candidate pair" and is

further evaluated for alignment as described above. The algorithm has a worst-case run-time

complexity of 0(n x (Dmax - Dmin) x ui). In practice, Dmax could be as high as 10,000 -

15,000 and Dmin could be as low as 100. In an attempt to save run-time, the algorithm's

implementation resorts to a technique of sampling the search interval, i.e., the value of i is

incremented by some Ai > 1 instead of 1. This would reduce the run-time cost by a factor of

Ai, but also at the expense of prediction accuracy. Moreover, this algorithm will consider many

redundant or "duplicate" pairs of locations corresponding to the same matching pair of regions.

To see this, note that if a 5'-3' LTR pair share a long exact match of length I > u bp, then

there are (/ — w + 1) pairs of cv—length identical substrings and the algorithm will generate all

www.manaraa.com

89

these pairs of locations even though they correspond to the same longer exact match. Ideally,

generation of such "duplicate" pairs should be completely avoided in the interest of run-time.

Also note that the run-time complexity is independent of the repetitive nature of the genome,

i.e., while at long stretches of the genome that have no LTRs, this algorithm would search for

an entire (Dmax - Dm,n)-length interval only to result in more wasted effort.

In a pilot study on a Windows machine with 1 GHz Pentium III processor conducted by

one of our colleagues [Gai (2005)], LTRSTRUC took 3.5 hours on the entire yeast genome

(over 12 Mbp) and over 15 hours on chromosome 1 of Arabidopsis thaliana genome (over 30

M bp). These high run-times are likely to be a major limiting factor in the applicability of

the LTR_STRUC software on larger genomes such as the human, maize, etc., mainly because

a biologist would like to run a de novo prediction tool such as LTRSTRUC multiple times

under different parameter settings before arriving at a high-quality repository of predictions.

5.2 Notation

Let s denote the input DNA sequence comprising of n nucleotides. For computational

purposes, we view s as a string of n characters in alphabet 2 = {A,C,G,T,N}, where 'JV'

may denote either a low-quality or masked base in the input sequence. Let s[i] denote the

character at position i in s (1 < i < n). Let s[i..j] denote the substring s['<].s[z + 1]... s[j}. Let

left(i) = s[z — 1], if i > 1, and 'JV' otherwise; similarly, let right(i) = s[i + 1], if i < n, and 'JV'

otherwise. Two identical substrings s[ii~(ii + k)} = s[%2-(*2 + &)] are said to be left-maximal

(respectively right-maximat) if and only if left(i\) leftfa) (respectively right(i\ + k) ^

right(i2 + k)). They are said to be a maximal matching pair if they are both right- and left-

maximal. We will assume that aligning 'JV' with any other character should be treated as a

mismatch.

5.3 Our Approach

The main idea of our approach is to have an efficient linear time preprocessing of the

entire input sequence, followed by an algorithm that provides a direct mechanism (as opposed

www.manaraa.com

90

to a searching mechanism) for generation of "candidate pairs". Our definition of "candidate

pairs" is based on maximal matches subject to LTR retrotransposon length constraints. Each

candidate pair is then subjected to a rigorous alignment test that guarantees an alignment

with the combinatorially best score for testing against LI.

The advantage of generating candidate pairs based on maximal matches instead of fixed-

length matches is that it provides a direct means of detecting a "long" exact match rather than

as a chain of smaller fixed-length exact matches. While the detection of maximal matches is well

studied in literature using the suffix tree data structure [Gusfield (1997b)], our pair generation

algorithm follows a related strategy using the suffix array and Longest Common Prefix (LCP)

array [Gusfield (1997b)] data structures, taking into account L2. The suffix array of a string

is the lexicographically sorted array of all its suffixes, and the following property is key for our

pair generation algorithm: any two identical substrings starting at a pair of positions can be

represented as a common prefix shared by the two suffixes starting at these positions.

5.3.1 The Sequential Algorithm

Let Lmin (Lmax) denote the minimum (maximum) allowed length of an LTR (as shown in

Figure 5.1). Let Lex denote a length such that any 5'-3' pair of LTRs will share at least one

exact match of that length. This user-specified parameter can be analytically estimated as

follows: if if), the rate of mutation (as a fraction) in the host genome is known, a reasonable

is

Definition 3 Candidate Pair: A pair of genomic positions (u, 22) fl < ii, 12 < n) is defined

to be a candidate pair if and only if it satisfies the following properties:

1. the positions satisfy L2, i.e., (n + Dmm) < i2 < {i\ + Dmax).

S. the substrings a[:i .. (*% + Lex — 1)] and s[^2 -- {h + Lex — 1)] are left-maximal.

Note that there is a one-to-one correspondence between the set of maximal matching pairs of

minimum length Lex and left-maximal pairs of length Lex. Our algorithm comprises of three

phases: a preprocessing phase, a candidate pair generation phase, and an alignment phase.

www.manaraa.com

91

SA:

LCP:

bucket Bk —

1 4 - 1 4 r k r k + 1 n

V t k < i < r k , L C P [i \ > L e x

LCP[l k - 1] < L e x , L C P [r k + 1 } < L e

Figure 5.2 Illustration of the process of creating a bucket during pre­
processing.

5.3.1.1 Preprocessing

The goal of preprocessing is to "arrange" the positions {1,2,..., n} in s in a manner that

allows quick generation of candidate pairs as per Definition 3. This is achieved in two steps —

(i) partition the positions based on their Lea;-length substrings and then internally subpartition

them based on the character preceding each position so that any two left-maximal substrings

are in different subsets, and (ii) sort the positions within each subset so that the check for L2

can be quickly performed. The algorithm is as follows.

In the first step, construct a suffix array (denoted by S A) data structure [Manber and Myers

(1993)] on s in linear time [Karkkanen and Sander (2003); Kim et al. (2003); Ko and Aluru

(2003)] and also the corresponding longest common prefix array (denoted by LCP) [Kasai

e t a l . (2 0 0 1)] . A s a r e s u l t , S A [i] i s t h e i t h l e x i c o g r a p h i c a l l y s m a l l e s t s u f f i x i n s (V I < i < n) ,

and LCP[i] is the length of the longest common prefix between suffixes SA[i] and SA[i + 1]

(VI < i < n — 1). Next, a set B = {l?i, B2l..., Brn} of m buckets is generated such that

Vi, j G Bk, VI < k < m, s[z .. (i + Lex — 1)] = s[j .. (j + Lex — 1)]. This is achieved by linearly

scanning the LCP[l..n — 1] array and recording all maximal intervals in which the LCP values

are all greater than or equal to Lex. The value of m is therefore the number of such maximal

intervals. For each maximal interval the set of all suffix entries that it covers in the array

SA[l..n] is then assigned to a unique bucket in B. See Figure 5.2 for an illustration. Because

every LCP entry covers two consecutive suffix entries in SA, each resulting bucket contains at

www.manaraa.com

92

Algorithm 7 Candidate Pair Generation

Input: Bucket
Li: FOR EACH cx G £ DO

L2: FOR EACH i G Lsetk
ci DO

L3: FOR EACH C2 E S and (c% ^ c2 or c\—c2 — lN') DO
Si: bi <r- min{j\j G Lset*,Dmin < (j - i) < Dmax}
S2'- e, 4- G Lset*2,Dmin < (j - i) < Dmax}
S3: Generate pairs (t, j), Vj G Lset*2,6, < j < ei

Figure 5.3 Algorithm to generate candidate pairs from a given bucket B^.

least two suffix entries, i.e., 0 < m < [|J. Choosing maximal intervals in the LCP array with

values > Lex ensures that VI < & < m, Vz G Bk, all substrings s[z..(z + Lea; — 1)] are identical.

The next step is to sort each bucket in ascending order of the position numbers. This

is done once for all buckets through a stable integer sort. Each bucket Bk is then further

partitioned into |E| ordered sets called Lsets: Vc G S, Lsetç = {i | left(i) =c,t G %}. It is

easy to see that one can partition every B^ into these individual Lsets still maintaining the

internal sorted order within each Lset. Maintaining the sorted order is critical for efficient

generation of candidate pairs, as will soon become evident.

5.3.1.2 Candidate Pair Generation

Once the input sequence is preprocessed, candidate pairs can be generated from within

each bucket. The algorithm for generating candidate pairs is presented in Figure 5.3, and an

illustration to help understand the algorithm is provided in Figure 5.4.

For each bucket B&, all Lsets are scanned in the ascending order of the position number.

A position i in Lset^ is paired with a position j if and only if j G Lset£2 such that c2 ^ c\

or c2 ='iV' (i.e., the substrings s[i..('t + Lex — 1)] and s[j..(j + Lex — 1)] are left-maximal),

and [i + Dmin) < j < (i + Drnax) (i.e., the pair (i,j) satisfies L2). This guarantees that a

pair (i, j) is generated only if it is a candidate pair by Definition 3. Enumerating all j (and

only those j) that should be paired with i is achieved in the following manner. Since each

www.manaraa.com

93

Bucket Bk: Lset\ Lsetk
c Lset% Lset\ Lset%

=ï (k> > bi)

A (ei' > ei)

Figure 5.4 Illustration of the candidate pair generation algorithm.

Lset is internally sorted by position numbers, the valid entries for j for a given value of i will

be placed consecutively in Lset*2, defined by a range, say [bi,... , e,]. If i is the first entry of

the ordered set Lset^v bi can be located in Lset^2 by performing a linear scan until a value

that is > (i + Dmin) is encountered. Once bi is located, we can continue pairing i with all

subsequent elements from bi in Lset^2 until (i + Dmax) is exceeded or the Lset is exhausted.

The last element to be paired is e,. Henceforth, in advancing each i to its next position say %'

in Lsetit is sufficient to start searching for bti from bi onwards, since bti > bt as i' > i. Even

better, one can record the location of b^ if it is found before e,, while generating pairs for i,

and directly start from b# for %'.

Since the algorithm ensures every entry in each bucket is considered for i, and that for

each such i all valid entries for j from the same bucket are considered, it can be seen that our

candidate pair generation does not miss any candidate pair satisfying Definition 3. Moreover,

since each entry in a bucket is considered for i exactly once it is also easy to see that each

candidate pair is generated exactly once.

Lemma 4 Let s[zv-(ii + fc — 1)] and s[i2--(«2 + £; — !)] be two maximal matching substrings,

for some k > Lex, and (ii + Dmin) < i2 < (ii +Dmax). Then (n,^) is generated exactly once.

Proof: If s[z'i..(ii +& — !)] and s[i2--(i2 + k — l)} are two maximal matching substrings of length

> Lex then there is exactly one pair of left-maximal Learlong substrings: s[îi-.(îi + Lex — 1)]

Sorted

(ascending)

order

X

bf

e.

ev

www.manaraa.com

94

i $ — L/max Lex j

Figure 5.5 Two alignments are performed for each candidate pair
si vs. S3 and s% vs. S4. Dotted arrows indicate the directions of
the alignments, and the two ovals indicate the anchoring match.

and s[î2-.(î2 +Lex — 1)]. Therefore (n, 22) is a candidate pair by Definition 3 and is generated

exactly once by the algorithm. •

5.3.1.3 Run-time Analysis

For the preprocessing phase, the construction of suffix array [Karkkanen and Sander (2003);

Kim et al. (2003); Ko and Aluru (2003)] and LCP array [Kasai et al. (2001)] take 0(n) time.

Generating the set of buckets also takes 0(n) time because the algorithm performs a linear

scan of the arrays. Sorting each bucket by position numbers and generating all Lsets for all

buckets are integer sorting operations. The outermost loops, L\ and L2 of Algorithm 5.3, over

all iterations visit each position in {1,..., n} at most once, although in an arbitrary order. By

Lemma 4, the cost of Step S3 over all iterations is proportional to the number of candidate

pairs generated. For steps Si and S%, note that at worst case, locating a particular bi may

take O(n) if it is the first entry in its Lset. However, the amortized worst case total cost is

still 0(n) because each entry is considered exactly once for choice of i and at most 2 x |S|

times for j, implying a run-time cost of Q((2 x |E| + 1) x n) = 0(n) (taking |£| = 5 to be

a constant). Thus the pair generation algorithm has an optimal run-time, i.e., 0(n) plus the

number of candidates pairs in s.

www.manaraa.com

95

5.3.1.4 Alignment and LTR Prediction

Once a candidate pair is reported, the regions flanking the corresponding match are evalu­

ated to check if the aggregate region indeed has an expected LTR structure. This is achieved

by computing an alignment as follows: For each candidate pair four substrings each of

length Lmax — Lex are extracted as indicated in Figure 5.5, following which two alignments are

computed — one alignment between s[i + Lex .. i + Lmax - 1] and s\j + Lex .. j + Lmax - 1],

and another alignment between the reverse of s[i — (Lmax — Lex) .. i — 1] and the reverse

of s[j — (Lmax — Lex) .. j — 1], We use standard dynamic programming techniques for com­

puting an optimal global alignment score between two sequences using affine gap penalties

[Gotoh (1982)]. In order to save run-time, alignment computation is restricted over a band

of diagonals while ensuring the optimality of score. Once the alignments are computed, an

aggregate alignment score is calculated by adding the scores of the best aligning prefixes in

the two computed alignments plus the matching score of the anchored match in the middle.

If this aggregate score satisfies LI, the boundaries of the two aligning regions is reported as a

predicted pair of LTRs.

As part of the above outlined alignment method, we also account for the presence of TSDs

and LTR motifs. TSDs are detected by looking for an exact match of length 5-6 bp in the left

and right vicinity of the predicted 5' and 3' LTRs, respectively (as shown in Figure 5.5). Also,

the 5' and 3' ends of each of the two LTRs and their vicinity are searched for a presence of

the motifs TG and CA respectively. Along the process of this search for motifs and TSDs, the

alignment boundaries are adjusted between the predicted pair of LTRs.

In order to be able to distinguish among the predictions made by our algorithm based

on the presence and absence of LTR structural signals, we associate a "confidence level" and

report it as part of each prediction. The confidence level for each prediction is given by the

following formula:

Confidence Level = WeightrsD x TSDcode + Weightmotif x Motif

where 0 < Weighth sq , Weightmotl/ < 1 are weights assigned by the user to specify the

relative importance of the presence of identical TSDs and motifs; note that WeighthsD +

www.manaraa.com

96

TSDs 5' Motif (TG) 3' Motif (CA) Confidence Level
Identical Present Present 1.0
Identical Present Absent 0.75
Identical Absent Present 0.75
Identical Absent Absent 0.5

Not Identical Present Present 0.5
Not Identical Present Absent 0.25
Not Identical Absent Present 0.25
Not Identical Absent Absent 0.0

Table 5.1 Confidence levels for different scenarios depending on the pres­
ence or absence of TSDs and motifs.

Weightm o t i f = 1. For example, if the presence of the motifs in both LTRs is only half as

important as the presence of identical TSDs, then the values can be: Weightmon/ = 0.33 and

Weightrsd = 0.67. For a given prediction: TSDœde is set to 1 if the two predicted TSDs are

identical, and 0 otherwise; and Motif code is set to 1 if both 5' and 3' LTRs start and end with

TG and CA respectively, 0.5 if only one motif is found, and 0 otherwise. Given weights of

0.5 for both WeightxsD and Weightmotif, Table 5.1 shows the different confidence levels and

their meanings.

5.3.2 Parallelization

The sequential algorithm presented in the previous section is parallelized in the following

manner: The input sequence can be distributed evenly across processors. To ensure that no

pairs are missed, the last Dmax — 1 characters in the local portion of the input are duplicated as

a prefix in the local portion of the next processor, resulting in at most ~ + Dmax — 1 characters

per processor. Once distributed, each processor can run the serial algorithm on its local portion

of the input without needing to further communicate. The speedup of the preprocessing phase

is proportional to n+pmax, thereby achieving a linear speedup as long as Dmax « The

speedup of the candidate pair generation and alignment phases are however highly dependent

on the input, and the distribution of the repetitive elements among processors. Although one

can dynamically balance this workload, our current implementation does not support such

www.manaraa.com

97

Parameter Name Default Value Comment

Dmin 100, 15000 Distance constraints (L2) for 5'-3' LTR pair

Lmini Lmax 100, 1000 Length constraints for 5'-3' LTR pair
Lex 20 Exact match length requirement for 5'-3' LTR pair
T 75% Similarity threshold of a 5'-3' LTR pair (LI)

match 2 Match score
mismatch -5 Mismatch score
open_gap 6 Gap opening penalty

continuation_gap 1 Gap continuation penalty
WeightxsD 0.5 Weight for presence/absence of TSD
W eightmotif 0.5 Weight for presence/absence of the motif T G . . . C A

Table 5.2 Parameter set for our program with default values.

features.

5.3.3 Software Availability

We developed a software program called LTR-par that implements our LTR retrotrans­

poson detection algorithm. The implementation is in C and can be run either serially or

on multiprocessor computers and clusters with support for MPI (e.g., MPICH [Gropp et al.

(1996)]). The software is available free for academic use.

5.4 Results

5.4.1 Quality Validation

Validation of our software was performed by running the program on the entire yeast

genome and comparing the results against a "benchmark" of known LTR retrotransposon

locations ([Kim et al. (1998)], see the URL http://www.public.iastate.edu/~voytas for more

details). The list of parameters and their values used while running our LTR_par software is

shown in Table 5.2.

The yeast genome has 16 chromosomes, and the benchmark has a total of 50 known full-

length LTR retrotransposons. LTR-par predicted a total of 191 elements with different confi-

www.manaraa.com

98

Chromosome LTRjpar LTRSTRUC Chromosome
TP FP FN TP FP FN

1 1 0 0 1 0 0
2 3 0 0 2 0 1
3 1 0 1 1 0 1
4 7 0 1 1 2 7
5 1 1 1 1 0 1
6 1 0 0 1 0 0
7 6 3 0 5 0 1
8 2 0 0 2 0 0
9 1 0 0 1 0 0

10 2 0 0 2 0 0
11 0 0 0 0 0 0
12 5 0 1 4 0 2
13 3 1 1 3 0 1
14 3 0 0 2 0 1
15 3 0 1 3 0 1
16 5 0 0 5 0 0

Total 44 5 6 34 2 16

Table 5.3 Quality validation of running LTR-par and LTR_STRUC pro­
grams on the entire yeast genome.

dence levels: 49 with a confidence level of 1, 11 with a level of 0.75, 44 with a level of 0.5, 57

with a level of 0.25, and 30 with a level of 0. We extracted the 49 predictions with confidence

level 1, and evaluated them against the benchmark entries as follows. Each prediction made

by LTR-par is categorized as a "true positive" if the prediction is part of the benchmark, and a

"false positive" otherwise. Those retroelements that were not part of our prediction are labeled

"false negative". The results are shown in Table 5.3, listed by each chromosome.

All the 44 true positives accurately predicted the LTR boundaries along with their TSDs

and motif locations. Of the 6 false negatives, 3 were not identified because they do not have

identical TSDs; all these 3 were however accurately reported at a lower confidence level (0.5).

Of the remaining three, one was not identified because of a low LTR sequence identity (69%)

and another was identified with a lower confidence (0.5) because of boundary mis-predictions

resulting from its computed optimal alignment not matching the "biologically-preferred" LTR

www.manaraa.com

99

boundaries in the benchmark entry. LTR-par identified the last false negative entry although

with its predicted LTR boundaries inconsistent with that of the benchmark entry; however,

this approximate prediction was made with a confidence of 1.

Of the 5 false positives, 3 of them were LTRs part of other full-length retroelements but

reported because they were similar and proximate along the genome. We invalidated these can­

didates by ensuring that there is no known reverse transcriptase coding sequences intervening

the predicted 5' and 3' sequences (by running tblastx [Altschul et al. (1990)]). Of the remaining

two false positives, one shares its 3' LTR with that of a true positive prediction, while the 5' is

different. We speculate that this is a nested retrotransposon, although further investigation is

required to validate this claim. The last false positive is same as the last false negative case we

discussed above — the 3' LTR (334 bp long) matches accurately with that of the benchmark;

however, instead of the 5' LTR (140 bp long) reported in the benchmark, our prediction has

a longer 5' prediction that is 338 bp long, covering the benchmark's 5' region. The fact that

there is a 5' LTR that matches closely in length and sequence identity with that of the 3' LTR

(along with a pair of identical TSDs and motifs as predicted by LTR-par) suggests that the

length discrepancy between this LTR pair in the benchmark record is probably outdated with

respect to the current sequence in GenBank.

For comparison purposes, we also ran the LTRSTRUC program on the yeast genome and

compared its results against the benchmark. The program was run in its default parameter

settings (which has a similarity threshold of 75%), and at the highest level of "thoroughness"

permitted by the program [McCarthy and McDonald (2003)]. These results are also shown in

Table 5.3. Of the total 16 false negatives, the program misses all the three elements with non-

identical TSDs (note that LTR-par identifies these as low confident predictions). As expected,

the program also misses the retroelement with 69% LTR sequence identity. We could not

ascertain the reason(s) for missing of the remaining 12 LTR pairs. It is likely that the program

either failed to generate candidate pairs because of jumping by Ai characters as a means to

save run-time or that an alignment that was inferior to a best alignment was computed on

aligning them.

www.manaraa.com

100

5' LTR 3' LTR 3' LTR
(a)

(b)

(c)

472,377 472,714 477,965 478,298 479,016 483,549 483,886

473,432
Genome Co-ordinates

Figure 5.(A case of nested retrotransposons in chromosome 10 of S. cere-
visiae with 3 LTRs. The bottom-most line indicates the genome
(not to scale). Part (a) shows the benchmark co-ordinates for
the LTRs. Parts (b) and (c) show the two LTR_par predictions.

The above results show that LTR.par has a better sensitivity than LTRSTRUC, while

LTRSTRUC has a better specificity than LTR-par. For a de novo prediction program, while

it is important to keep the number of false predictions low in the interest of saving further

validation efforts, it is more important to have high sensitivity because a missed prediction

cannot be found through subsequent post-processing of the program's output. As for the false

predictions made by LTR-par, we observed that most of these predictions are due to generic

repeats that have both high sequence identities and genomic proximities. In addition to offering

a higher sensitivity, the scheme of predicting at different confidence levels provides additional

flexibility in handling false predictions. For instance, in case of the above results on the yeast

genome, even though a total of 191 predictions were reported by LTR.par, 44 of the total 50

retroelements were predicted with a confidence of 1, while a majority of these false predictions

were reported at lower confidence levels. This allows a user to evaluate the predictions in the

order of confidence reported.

There was also a case of "nested" retrotransposon in the benchmark data set along chro­

mosome 10. Figure 5.6 shows this case, where one 5' LTR is shared between two full-length

retrotransposons. As illustrated in the figure, our software also predicted the two retrotrans­

posons, one of which with consistent boundary and TSD predictions as well.

Besides the yeast genome, we also ran LTR.par on a collection of 9 rice BAG sequences,

randomly selected from a larger set of rice BAGs analyzed using LTR.STR UC by McCarthy et

www.manaraa.com

101

Organism Genome Size Number of Total Time
(in bp) processors (in minutes)

Saccharomyces cerevisiae 12,070,811 8 1.2
Arabidopsis thaliana 119,186,497 32 67

Drosophila melanogaster 118,357,599 32 33
Pan troglodytes 3,084,092,060 50 491

Table 5.4 Run-time results of LTR_par on different genomes.

al [McCarthy et al. (2002)]. Both the programs detected 8 full-length LTR retrotransposons in

common. However, LTR-par detected 4 predictions that were absent in the LTRSTRUCs list

of predictions. On the other hand, LTR.STRUC predicted 2 solo-LTRs (i.e., non full-length

elements) which were not predicted by LTE,.par.

5.4.2 Performance Results

As for run-time on the yeast genome (over 12 M b p) , I / T R . S T R U G took about 210 minutes

on a Windows Intel Pentium III 1 GHz machine, while LTR-par took 10 minutes on a single

Intel Pentium III 1.1 GHz processor. While LTR.par spends much less time on candidate

pair generation than LTR^STRUC, it spends most of its time in performing alignments simply

because it does more work to guarantee optimality. For example, on the yeast genome, LTR.par

spent only 8% of the time in preprocessing and generating pairs, while the remaining 92% was

spent in aligning the LTR candidates. This extra effort spent in ensuring a thorough alignment

is supported by a better sensitivity of our software when compared to LTR.STRUC, as was

seen in the above validation studies. We also studied the performance of LTR.par on a Linux

cluster of 25 nodes, each with 2 Intel Xeon 3.06 GHz processors and 2 GB RAM. The parallel

run-times taken by LTR.par for genomes of different sizes are shown in Table 5.4.

In order to assess the parallel scalability of our current implementation, we ran LTR-par

on different number of processors by keeping the input size fixed. Table 5.5 shows these results

on the entire yeast genome (11 Mbp) and on the chromosome 3R (27 Mbp) of the Drosophila

genome. As can be observed in both cases, the parallel efficiency decreases with increase in the

www.manaraa.com

102

Input Number of processors
1 2 4 8 16 32

Yeast Genome 226 150 96 71 53 40
Chromosome 3R 820 598 455 294 270 255

Table 5.5 Parallel run-times (in seconds) of LTRjpar on the yeast genome
and the chromosome 3R of Drosophila.

number of processors. This is expected because the current implementation does not distribute

alignment workload across processors, i.e., a candidate pair generated on a given processor is

aligned on the same processor, regardless of the repetitive nature of the portion of genome

assigned to the processor. Thus the parallel bottleneck is the processor with the maximum

alignment work.

5.4.3 A Large-Scale Application

In order to validate the applicability of the software on newly sequenced genomes, we

ran LTR.par on the entire chimpanzee (Pan troglodytes) genome [Sequencing and Consortium

(2005)]. The chimpanzee genome comprises of 23 pairs of autosomal chromosomes and 2 pairs

of sex chromosomes. The sequence data downloaded from GenBank as of September 2005 has

over 3 billion bp. On 50 processors of the Linux cluster described above the program took

under 8.5 hours to complete on the entire genome. On the longest chromosome («229 Mbp

long chromosome 1) the program took about 27 minutes, while the longest run-time was 58

minutes on chromosome 4 («209 Mbp long). Running on this genome takes a week to 10 days

using LTR.STRUC [Polavarapu (2005)].

As part of an ongoing research initiative, a team at Georgia Institute of Technology is work­

ing on identification of full-length LTR retrotransposons in the chimpanzee genome [Polavarapu

et al. (2006)]. Recently, the team identified a set of full-length retroelements using a custom-

developed framework that performs an extensive search for LTRs accompanied by other impor­

tant intervening patterns such as known reverse transcriptase sequences, primer binding site,

poly-purine tract, etc. Due to its elaborate treatment, the full-length elements detected by this

www.manaraa.com

103

procedure are expected to be highly accurate and conservative; so we used the resulting set as

a benchmark for our studies and performed a case study on a randomly chosen chromosome

(chromosome 12 which is «135 Mbp long).

The benchmark set for chromosome 12 comprised of 19 full-length elements. Under the

default parameter settings in Table 5.2, our program predicted only 7 of the 19. When the

similarity threshold (r) was decreased to 70% and Lmax was increased 2,000 bp, 12 of the 19

predicted correctly. Note that only 3 of these 12 were at confidence level 1. Of the remaining 7

not predicted by LTR-par, 5 were predicted when the similarity threshold was further reduced

from 70% to 60%. The remaining two were not predicted because one has two LTRs of largely

differing lengths (658 bp and 960 bp) and another has less than 50% sequence similarity between

the LTRs. In addition to the benchmark hits, LTR.par predicted a total of 895 elements,

including 38 at confidence level 1. Upon investigation of randomly chosen predictions, we found

that many candidates do not contain any known reverse transcriptase sequences. However, the

38 predictions with confidence 1 show promise and need further validation.

5.5 Discussion

The results of validating our software are encouraging. The sensitivity on the yeast genome

is better than that of the LTRSTRUC because our algorithm more accurately models mutation

events in LTR and TSD regions. Moreover, LTR.par offers good flexibility by providing the

user with a better control — the user can assign weights to the presence/absence of TSDs and

TG... CA motifs, and the software can output its predictions at different confidence levels

reflecting the weights specified by the user. Also, if a user is searching a newly sequenced

genome for LTR retroelements, the user can try different combinations of weights and scoring

parameter values and observe changes in the predictions before deciding on an appropriate

set of parameters. The speed of our software plays a critical role in facilitating multiple such

experiments under different parameter settings. The software can also be used to identify

nested retroelements; cases that correspond to multiple nested insertions can be detected by

running our software iteratively on the genomic sequence with all the full-length elements found

www.manaraa.com

104

in previous iterations excised out.

Given that the current version of the software accounts only for the structural attributes

such as TSDs and motifs, we recommend using our software for de novo full-length LTR

retrotransposon prediction on genomes in which the two LTRs of each retrotransposon are

expected to be highly conserved. The specificity of the current state of our software can be

extended to incorporate other structural attributes typical of an LTR retrotransposon: The

genomic region between a pair of LTR sequences typically contains special-purpose sequences

such as PPT, PBS, gag, pol, and env, and detecting these patterns is important in confirming

the biological identity of each prediction. Poly-Purine Tract can be detected by searching for a

purine-rich (bases A/G) region of an approximate length of 10 bp immediately upstream of the

predicted 3' LTR boundary. Similarly, the region immediately downstream of the predicted

5' LTR sequence can be searched for presence of Primer Binding Site. PBS is usually a

complement of a known tRNA 3' terminal sequence — a pattern that can be input by the

user. The genes in the gag and env regions can be detected by looking for sequences that

encode retroviral capsid and envelope proteins respectively. The genes in the pol region can be

searched for sequences that encode for protease, integrase and reverse transcriptase enzymes.

5.6 Concluding Remarks

In this chapter, we provided efficient algorithms and software towards detection of full-

length LTR retrotransposons. One salient feature of our method is a space- and time-efficient

algorithm for generating candidate LTR pairs, which facilitates use of rigorous methods for

aligning the candidates in order to ensure high quality LTR predictions. The software has been

designed with the intent of giving a high degree of flexibility to the user. The various planned

functional improvements to the software, such as incorporation of detection strategies for PPT,

PBS, gag, pol genes in the structure finding procedure, should strengthen the specificity of the

software. Due to the ubiquity of LTR retroelements in complex eukaryotic genomes, developing

a highly accurate and fast LTR retrotransposon discovery tool can significantly advance the

state of knowledge in retrotransposon research topics.

www.manaraa.com

105

CHAPTER 6. SCAFFOLDING GENOMIC CONTIGS USING LTR

RETROTRANSPOSONS

The abundance of LTR retrotransposons in several eukaryotic genomes have traditionally

been viewed as a source of complication in their assembly. In this chapter, we present a novel

approach [Kalyanaraman et al. (2006a)] that provides an alternative — a method that can

exploit the presence of these repeat elements in genomes and provide valuable information for

performing one stage of genome assembly.

Hierarchical sequencing [Consortium (2001)] is being used to sequence the maize genome

[NSF (2005)]. In this approach, a genome is first broken into numerous smaller BAC clones,

each of size up to 200 kbp. Next, a combination of these BACs that provide a minimum tiling

path based on their locations along the genome is determined. Each selected BAC is then

individually sequenced using a shotgun approach that generates numerous short («500-1,000

bp long) fragments. The problem of assembling the target genome is thereby reduced to the

problem of computationally assembling each BAC from its fragments.

The fragments generated by a shotgun experiment approximately represent a collection of

sequences originating from positions distributed uniformly at random over each BAC. As with

a jigsaw puzzle, the idea is to generate fragments such that each genomic position is expected to

be covered (or sampled) by at least one fragment — and also ensuring that there is sufficient

computable evidence in the form of overlaps between fragments to carry out the assembly.

Regardless of the coverage specified, however, gaps invariably occur during sequencing, i.e.,

it cannot be guaranteed that every position is covered by at least one fragment. Coverage

affects the nature of gaps — a low coverage typically results in several long gaps, while a high

coverage results in fewer and shorter gaps. Because of gaps, assembling a set of fragments

www.manaraa.com

106

BAC

Clone mat
pairs

Contigs

! gapi fja?2 gaps

1 Physical
gap «

Physical
gap e ,

Physical
gap

t
1
1

Physical
gap

!
fc2

Physical
gap

fc4

Figure 6.1 An example showing 6 pairs of clone mate fragments (shown
connected in dotted lines) sequenced from a given BAG. The
relative order and orientation between contigs ci and c% (also,
between C3 and C4) can be inferred from the clone mates.

sequenced from a BAG typically results in not one but many assembled sequences (or contigs)

that represent the set of all contiguous genomic stretches sampled. The next step, scaffolding,

is aimed at determining the order and orientation of the contigs relative to one another. Once

scaffolded, the identified gaps between contigs can be filled through targeted experimental

procedures called pre-finishing and finishing. For simplicity, we use the term "finishing" to

collectively refer to both these procedures.

The main focus of this chapter is the scaffolding step. The need for scaffolding arises

from the fact that there could be gaps in sequencing. To be able to identify a pair of contigs

corresponding to adjacent genomic stretches, current methods generate shotgun fragments in

"pairs" — each BAC is first broken into smaller clones of length «5 kbp, and each such clone

is sequenced from both ends thereby producing two fragments which are referred to as clone

mates (or a clone pair). During scaffolding, the fact that a pair of clone mates originated

from the same «5 kbp clone can be used to impose distance and orientation constraints for

linking contigs that span the corresponding fragments [Batzoglou et al. (2002); Huson et al.

(2001); Jaffe et al. (2003); Mullikin and Ning (2003); Pop et al. (2004)]. Figure 6.1 illustrates an

example of scaffolding contigs based on clone mate information. This technique is not, however,

sufficient to link contigs surrounding gaps without a flanking pair of clone mates {gap2 in

Figure 6.1). Such gaps, called physical gaps, are typically harder to "close", and involve costly

finishing efforts. Performing a higher coverage sequencing is an effective but expensive approach

to reduce the occurrences of gaps. The approach proposed in this dissertation provides an

www.manaraa.com

107

alternative mechanism to scaffold around physical gaps as well, subject to their repeat content.

In this research, we introduce a new variant of the scaffolding problem called the retroscaf-

folding problem. The problem is to order and orient contigs based on their span of LTR

retrotransposon-rich regions of the genome. This approach has the following advantages:

• It does not require clone mate information. Thus, our approach complements existing

scaffolding approaches for genomes with significant LTR retrotransposon content. Also,

with the advent of newer sequencing technologies [Margulies et al. (2005)] that do not

generate clone mate information, the importance of our approach is further enhanced.

• It can be used to identify LTR retrotransposon-rich portions within the unfinished ge­

nomic regions. Such information can be useful if it is decided to not finish repetitive

regions in the interest of saving costs, as is the case with the maize genome project [NSF

(2005)].

» In genome projects of highly repetitive genomes, most of the sequencing and finishing

efforts are expected to be spent on repeat rich regions. This is one of the main concerns

in the on-going efforts to sequence the maize genome, at least 50% of which is expected to

be retrotransposons. The retroscaffolding technique provides a mechanism to reduce se­

quencing coverage without affecting the quality of the genie portion of the final assembly,

thereby providing a means to reduce the sequencing costs.

In Section 6.1, we describe the retroscaffolding idea, formulate it as a problem, and discuss

the various factors that affect the ability to retroscaffold. For obtaining a proof of concept,

we conducted experiments on previously sequenced maize BAG data. The results show that

(i) 3X/4X coverage sequencing is suited for exploiting the data's repeat content towards ret­

roscaffolding, (ii) retroscaffolding can yield over 30% savings in finishing costs, and (iii) with

retroscaffolding it is possible to opt for a lower sequencing coverage. These and other ex­

perimental results assessing the effects of various factors on retroscaffolding are presented in

Section 6.2. As part of the NSF/DOE/USDA maize genome project [NSF (2005)], we are

working on applying the retroscaffolding technique to the maize data as it becomes available.

www.manaraa.com

108

To this effect, we are developing an algorithmic framework to perform retroscaffolding as de­

scribed in Section 6.3. In Section 6.4, we present the results of our experiments to assess the

effect of applying both clone mate based scaffolding and retroscaffolding on maize genomic

data. Various strengths and limitations of the retroscaffolding technique axe discussed in Sec­

tion 6.5. Given that retrotransposons are abundant in genomes of numerous plant crops yet to

be sequenced (e.g., wheat, barley, sorghum, etc.), the capability of retroscaffolding to exploit

this repeat content can provide a significant means to reduce sequencing and finishing costs.

6.1 Retroscaffolding

Long Terminal Repeat (LTR) retrotransposons constitute one of the most abundant classes

of retrotransposons. As earlier described in Chapter 5, they are distinctly characterized in their

structure by two terminal repeat sequences — one each at the 5' and 3' ends of a retrotranspo­

son inserted in a host genome. Given that these retrotransposons are typically 10-15 kbp long,

their flanking LTRs can also be expected to be separated by as many bps along the genome1.

Moreover, the LTR sequences are identical at the time a retrotransposon inserts itself into

a host genome, and gradually diverge over time due to mutations. Yet, the LTRs flanking

most retrotransposons are similar enough for detection. These properties form the basis of our

retroscaffolding idea, as explained below.

Low coverage sequencing of a genome with significant LTR retrotransposon content is

likely to result in a proportionately large number of gaps that span these repetitive regions.

If it so happens that the sequencing covers only the two LTRs of a given retrotransposon,

a subsequent assembly can be expected to have two contigs each spanning one of the LTRs.

Therefore, the detection of two identical or highly similar LTR-like sequences in two contigs is

a necessary (but not sufficient) indication that the contigs sample the flanking regions of an

inserted retrotransposon. If this indication can be further validated to sufficiency by searching

for other structural signals of an LTR retrotransposon, then the contigs can be relatively

ordered and oriented (because LTRs are directed repeats). In addition, this implies that the

'Sometimes, LTR retrotransposons can be nested within one another, accordingly affecting the distances
between the 5' and 3' LTRs.

www.manaraa.com

109

Dmin — (p3 ^5) Dmax

&5 65 Lfjiin < (eg 65), (63 63) ^nwi ^3 ^-3

— ^ f r G . . . C A T P B S . . - g a g . . . p o l . . . e n v . . . P P T Y TG... CA\C Z)
Genome > 1 : ;

5' T S D o ' L T R Retrotransposon ^ 3'LTR 3'TSD
(a)

Cl " ~ ~-jfn CT^ PBS... c2 • • •PPT

retro-link

&min ^ distance ̂ &max
(b)

Figure 6.2 (a) Structure of a full-length LTR retrotransposon. (b) An
example showing two contigs c\ and Cg with a retro-link between
them.

intervening region between two consecutively ordered contigs contains retrotransposon related

sequences — an information that can be used to prioritize the gaps for finishing, and potentially

reduce efforts spent on finishing repetitive regions, if so desired.

The structure of a full-length LTR retrotransposon was described in detail in Chapter 5 (see

Section 5.1). For ease of exposition, we follow the same labeling convention from LI through

L5 as introduced in Section 5.1.

For a sequence s, let s^=s, and sr denote its reverse complement. A sequence c is said to

contain a sequence I if there exists between c and either if or F', a "good quality" semi-global

alignment. Let an LTR pair (1$/, I3') denote the two LTRs of a given LTR retrotransposon.

Definition of a Retro-link: Given a set L of n LTR pairs, two contigs c, and Cj are said

to be retro-linked, if 3 (Z5/, ly) 6 L such that both ct and Cj contain l5i or ly or both.

Note that the same pair of contigs can be retro-linked by more than one LTR pair. An

example of a retro-link between two contigs is shown in Figure 6.2b. The above definition can

be easily extended to account for additional structural attributes such as L3, L4 and L5, to

ensure that a retro-link indeed spans the same full-length LTR retrotransposon.

The Retroscaffolding Problem: Given a set C of m contigs and a set of retro-links,

partition C such that:

www.manaraa.com

110

• each subset is an ordered and oriented set of contigs,

• every pair of consecutive contigs in each subset is retro-linked and there is no contig that

participates in two retro-links in conflicting orientations, and

• the sum of the number of LTR pairs corresponding to all used retro-links is maximized.

The retroscaffolding problem can be viewed as a new variant of the traditional scaffolding

problem, which is called the Contig Scaffolding Problem [Huson et al. (2001)]. In the latter, the

input is a set of contigs and a set of clone mate links, where each clone mate link corresponds

to a distance and orientation constraint imposed by a pair of fragments sequenced from the

same clone of a known approximate length. This is similar to the distance and orientation

constraints imposed by a retro-link between the two contigs. Also, like in the retroscaffolding

problem, not all clone mate links may be used in the final ordering and orientation, while the

problem is to maximize the overall number of mate pair evidence corresponding to the clone

mate links used in scaffolding. Therefore, the computational complexity of the retroscaffolding

problem is same as that of the contig scaffolding problem, which is NP-complete [Huson et al.

(2001)].

The effectiveness of retroscaffolding on a genome is dictated by the following factors:

LTR retrotransposon abundance: The ability to retroscaffold depends on the num­

ber of retro-links that can be established, which is limited by the number of detectable LTR

retrotransposons in the genome. Note that this approach of exploiting the abundance in retro­

transposons offers a respite from the traditional view that these are a source of complication

in genome projects.

Presence of distinguishable LTRs: LTRs from different retrotransposons but from the

same "family" may share substantial sequence similarity. Therefore, it is essential to take

into account other structural evidence specific to an insertion before establishing a retro-link

between two contigs. Even if the same LTR retrotransposon is present in two different locations

of a genome, it can be expected that the TSDs are different because they correspond to the host

genomic sequence at the site of insertion. It may still happen that a target genome contains the

same family retrotransposons in abundant quantities, and other structural attributes become

www.manaraa.com

I l l

Parameter Name Default Value Description
Dmin/Dmax 600/15,000 bp Distance constraints between 5' and 3' LTRs (L2)
r 70% % identity cutoff between 5' and 3' LTRs (LI)
Lmin/Lmax 100/2,000 bp Minimum/maximum allowed length of an LTR
Match/mismatch 2/-5 Match and mismatch scores
Gap penalties 6/1 Gap opening and continuation penalties

Table 6.1 LTR.par parameter settings.

less distinguishable as well. If BAC-by-BAC sequencing is used, the above situation can be

alleviated by applying retroscaffolding to contigs corresponding to the same BAC (instead of

across BACs). This is because the likelihood of the same family occurring multiple times at a

BAC level is much smaller than at a genome level.

Sequencing coverage: Retroscaffolding targets each sequencing gap that spans an inserted

retrotransposon such that its flanking LTRs are represented in two different contigs. Hence­

forth, we will refer to such gaps as retro-gaps. Given the length of such an insert ranges from

10-15 kbp (greater, if it is a nested retrotransposon), the coverage at which the genome is

sequenced is a key factor affecting the ability to retroscaffold. If the sequencing coverage is

too high (e.g., 10X), then there are likely be so few (short) sequencing gaps that the need for

any scaffolding technique diminishes. Whereas at very low coverage (e.g., IX) long sequencing

gaps that span entire LTR retrotransposons are likely to prevail.

6.2 Proof of Concept of Retroscaffolding

In this section, we provide a proof of concept for retroscaffolding. For this purpose, four

finished maize BACs (listed in Table 6.2) were acquired from Cold Spring Harbor Laboratory

[McCombie (2005)]. The first step was to determine the LTR retrotransposon content of these

BACs. LTR_par, which is our program for identifying LTR retrotransposons as described in

Chapter 5, was used to analyze each BAC with the parameters specified in Table 6.1. Table 6.2

summarizes the findings. As can be observed, the fraction of LTR retrotransposons in these

BACs averages 42%, consistent with the latter's estimated abundance in the genome.

www.manaraa.com

112

GenBank BAC Length Number of LTR Retrotransposons in BAC
Accession (in bp) retrotransposons Length in bp % bp

BACi AC157977 107,631 3 29,578 27%
BACg AC160211 132,549 6 60,391 46%
BACs AC157776 147,470 8 73,099 50%
BAC4 AC 157487 136,932 6 57,783 42%

Table 6.2 Summary of the LTR retrotransposons identified in 4 maize
BACs using LTR.par.

The effect of sequencing at different coverages was assessed as follows. A program that

"simulates" a random shotgun sequencing over an arbitrary input sequence at a user-specified

coverage was acquired from Scott Emrich at Iowa State University [Emrich (2005)]. Each run

of the program produces a set (or sample) of fragments, along with the information of their

originating positions. We ran this program on each BAC for coverages IX through 10X, and

for each coverage 10 samples were collected to simulate sequencing 10 such BACs. For each

sample, using the knowledge of the fragments' originating positions, the set of all contiguous

genomic stretches covered (and thereby the set of sequencing gaps) was determined. Ideally,

assembling the sample would produce a contig for each contiguous stretch. Based on the

placement information of the contigs on the BAC and that of the LTR pairs (Table 6.2) on

the BAC, each LTR pair was classified into one of these three classes (see Figure 6.3):

• CgC: both LTRs are contained in two different contigs,

• C_C: both LTRs are contained in the same contig, and

• GgX: at least one LTR is not contained by any contig (i.e., it is located in a gap).

In this classification scheme, it is easy to see that retro-links can be expected to be es­

tablished only for CgC LTR pairs. Therefore, the ratio of the number of CgC LTR pairs

to the total number of LTR pairs is indicative of the maximal value of retroscaffolding at a

given coverage. We computed this ratio for each of the 4 BACs used in our experiments, by

considering one coverage at a time, and counting the LTR pairs in each of the three classes over

all 10 samples. From Table 6.3, we observe that the ratio is maximum for a 3X coverage for 3

www.manaraa.com

113

Genome -

Contigs
Fragments

Figure 6.3 Classification of LTR pairs based on the location of sequencing
gaps, LTRs, and contigs. Dotted lines denote sequencing gaps.
Retro-links correspond to the class CgC.

Coverage BACi BAC2 BACs BACi
CgC C_C CgC% CgC% CgC% CgC%

IX 16 1 13 53 83 63 63
2X 26 0 4 87 95 77 92
3X 25 3 2 83 100 97 100
4X 27 3 0 90 100 88 100
5X 24 6 0 80 95 93 95
6X 22 8 0 73 83 76 98
7X 19 11 0 63 83 61 100
8X 18 12 0 60 77 64 67
9X 16 14 0 53 48 50 60

10X 7 23 0 23 37 31 43

Table 6.3 Classification of the LTR pairs in 4 BACs, with respect to a
set of 10 shotgun samples obtained from each BAC at different
coverages.

out of the 4 BACs, and 4X for the other BAC. This implies that a 3X/4X coverage project is

expected to best benefit from the retroscaffolding approach. To understand the above results

intuitively, observe that a very high coverage has a high likelihood of sequencing an LTR retro­

transposon region to entirety, making retroscaffolding unnecessary; while a very low coverage

results in a high likelihood of LTRs falling in gaps, making retroscaffolding ineffective. Both

these expectations are corroborated in our experiments — in Table 6.3 the gradual increase in

C-C and the decrease in GgX with increasing coverage. The C-C increase with coverage also

indicates the amount of efforts spent in sequencing retrotransposon-rich regions.

In our next experiment, we assess the potential savings that can be achieved at the finishing

step through the information provided by retroscaffolding on gap content. Table 6.4 shows the

CgC C_C

-£——3-
5' 3' 5' 3' 5' 3'

www.manaraa.com

114

Coverage BACs BACa Coverage
All gaps Retro-gaps %Retro-gaps All gaps Retro-gaps %Retro-gaps

IX 70.5 26.4 37.4 78.0 24.8 31.8
2X 88.7 33.6 37.9 93.5 33.4 35.7
3X 84.6 32.2 38.1 84.0 31.0 36.9
4X 65.7 26.6 40.5 64.5 19.5 30.2
5X 50.6 19.3 38.1 46.4 16.7 36.0
6X 37.4 13.7 36.6 39.5 13.2 33.4
7X 28.3 9.5 33.6 26.6 9.1 34.2
8X 18.7 6.5 34.8 19.1 6.3 33.0
9X 13.0 3.0 23.1 11.9 5.9 49.6

10X 9.3 2.7 29.0 9.5 2.3 24.2

Table 6.4 Number of retro-gaps vs. all sequencing gaps. Measurements
are averaged over all 10 samples of each of the two BACs.

number of gaps generated at various sequencing coverages, and the number of which can be

detected using retroscaffolding (i.e., retro-gaps). While the results are shown only for two

BACs, we observed a similar pattern in all four BACs. As each retro-gap corresponds to a

potential region of the genome that may not necessitate finishing, the ratio of the number of

retro-gaps to the total number of sequencing gaps indicates the potential savings achievable at

the finishing step because of retroscaffolding. Prom the table we observe this ratio ranges from

23%-40% for BAC2, and 24%-49% for BAC4] averaging over 34% savings for both BACs.

Table 6.4 also shows that sequencing BAC2 at a 6X coverage is expected to result in %37

sequencing gaps; while sequencing at a 4X coverage and subsequently applying retroscaffold­

ing is expected to result in an effective 39 gaps (% 65.7—26.6). This implies that through

retroscaffolding it is possible to reduce the coverage from 6X to 4X on BAC2 without much

loss of scaffolding information. As retroscaffolding can be used independent of clone mate

information, we are working on evaluating the collective effectiveness of both clone mate-based

scaffolding and retroscaffolding approaches. If similar results can be shown at a much larger

scale of experimental data for a target genome, then retroscaffolding can be used to advocate

for a low coverage sequencing, directly impacting the sequencing costs of repetitive genomes.

www.manaraa.com

115

6.3 A Framework for Retro-linking

We developed the following two-phase approach to retroscaffolding. In the first phase, retro-

links are established between contigs that show "sufficient" evidence of spanning two ends of

the same LTR retrotransposon. Once retro-links are established, the process of scaffolding

the contigs is the same as scaffolding them based on clone mate information, i.e., each retro-

link can be treated equivalent to a clone mate pair that imposes distance and orientation

constraints appropriate for LTR retrotransposon inserts. Therefore, in principle, any of the

programs developed for the conventional contig scaffolding problem [Batzoglou et al. (2002);

Huson et al. (2001); Jaffe et al. (2003); Mullikin and Ning (2003); Pop et al. (2004)] can be

used to achieve retroscaffolding from the retro-linked contigs2]. In what follows, we describe

our approach to establish retro-links.

There are two types of retro-links that can be established among contig data: (i) those

that correspond to LTR retrotransposons that are already known to exist in the genome of

the target organism or closely related species, and (ii) those that are de novo found in the

contig data. The first class of retro-links can be established by building a database of known

LTR retrotransposons and detecting contigs that overlap with LTR sequences of the same

retrotransposon. However, such a database of already known LTR sequences of a target genome

may hardly be complete in practice. For this reason, the second class of retro-links that are

based on a de novo detection of LTR sequences in the contig data is preferable. However,

additional validation will be necessary to ensure the correctness of such retro-links.

In what follows, we describe the algorithmic framework we developed to establish retro-

links based on already known LTR retrotransposons, and the results of applying it on maize

genomic data.

6.3.1 Building a Database of LTR Pairs

Given that the entire genome of maize has not yet been assembled, the first step in our

approach is to build a database of maize LTR pairs from previously sequenced maize genomic

2For our experiments, we used the Bambus [Pop et al. (2004) program.

www.manaraa.com

116

Input Number of
sequences

Number of full-
length predictions

Number of
LTR pairs

LTR retrotransposons [Miguel (2005)] 560 556 556
Solo-LTRs [Miguel (2005)] 149 149
Maize BACs [Emrich (2005)] 470 1,234 1,234

Total 1,939

Table 6.5 Summary of LTR pairs predicted by LTR.par.

data. A set of 560 known full-length LTR retrotransposons and 149 solo LTRs3 was acquired

from San Miguel [Miguel (2005)]. In addition, a set of 470 maize BACs were downloaded

from GenBank [Emrich (2005)]. Because the information about the LTR sequences within the

full-length retrotransposons and BACs was not available, we used the LTR^par program to

identify LTR retrotransposons and their location information. We did not include the LTRs

identified in the four maize BACs listed in Table 6.2, so that they can be used as benchmark

data for validating retroscaffolding.

Given a set of sequences, LTR.par identifies subsequences within each sequence that bear

structural semblance to full-length LTR retrotransposons. Desired values for structural at­

tributes can be input as parameters. We used the values shown in Table 6.1. As part of each

prediction, the locations of both the 5' and 3' LTRs are output. A prediction is made only if

the identified region satisfies LTR sequence similarity (LI) and LTR distance (L2) conditions.

Based on the presence of other signals such as the TG..CA motif (L3) and TSDs (L4), each

prediction is also associated with a "confidence level". A confidence level of 1 implies presence

of both L3 and L4, 0.5 implies either L3 or L4 but not both, and 0 implies only LI and L2.

In this research, we use level 1 predictions, although we are currently evaluating other com­

binations of LTR pairs from across confidence levels. Table 6.5 shows the statistics over the

resultant total of 1,939 LTR pairs.

3Solo LTRs axe typically the result of a deletion/recombination event at a site of an inserted LTR retrotrans­
poson, in which only either a 5' or a 3' LTR (or a part of it) survives.

www.manaraa.com

117

6.3.2 An Algorithm to Establish Retro-links

Let C denote a set of m contigs generated through an assembly of maize fragments corre­

sponding to one BAC, and let L denote the set of n LTR pairs (n =1,939 in Table 6.5). Our

algorithmic framework performs the following steps:

• SI Compute P = {(c, { h > J y)) \ c G C , { l y j y) E L , c contains l y or Z3z or both}.

• S2 Construct a set G = { G] , G2,. . . , G n } , such that VG, Ç C, Vc G Q, (c, (l\,, l\,)) € P.

Note that G need not be a partition of C. We call each G\ a contig group.

• S3 VGj € G, compute Ri = {(ci,cj)\ci,cj € (%,(% and Cj are retro-linked by %,,Zy)}.

A naive way to perform step SI is by evaluating each of the m x n pairs of the form

(contig, LTR pair), to check if a contig contains one of the LTRs. The check can be performed

through standard dynamic programming techniques for computing semi-global alignments that

take time proportional to the product of the lengths of the sequences being aligned. As reverse

complemented forms also need to be considered, this approach involves 4 x m x n alignments

in the worst case.

An alternative and faster way to detect overlapping pairs of contigs and LTRs follows from

our PaCE approach discussed in Chapter 4: Instead of evaluating all pairs by alignment com­

putation, compute alignment only for pairs that show significant promise through sufficiently

long maximal matches. For this approach, we directly use the PaCE algorithm for first con­

structing a GST (see Section 4.3.1) for all contigs and LTRs, and detecting maximal matches

between pairs (see Section 4.2.2). Since there is no clustering functionality in the current con­

text, the order of pairs generated is irrelevant. A pair generated is always further evaluated

through alignment computation. It is, however, sufficient to report and consider only those

promising pairs that contain a contig and an LTR. This can be easily achieved without affect­

ing the complexity of PaCE pair generation algorithm by extending it to keep track of another

level of subpartitioning of I sets based on the sequence type (i.e., a contig or an LTR).

For each generated promising pair, an optimal semi-global alignment is computed. A

significantly aligning pair of contig and LTR is reported directly in the output. As pairs are

www.manaraa.com

118

output, the set G is computed as well in constant time per pair (step S2).

Steps Si and S2 ensure that two contigs are paired if and only if they contain LTRs from

the same LTR pair. To perform S3, it is therefore necessary only to establish additional

structural evidence such as the presence of TSDs, PPT, PBS, and/or retrotransposon genes.

The attributes to look for, however, depends on the location of the subsequences corresponding

to the LTRs within the contigs — for e.g., it may not be possible to look for retrotransposon

genie sequences if the LTR regions within the contigs are a suffix of one contig and a prefix

of another (see Figure 6.2b). We perform S3 as follows: we concatenate each pair of contigs

under consideration in each of the 4 possible orientation combinations, and run LTR.par on the

concatenated sequence. A retro-link is established between a pair only if sufficient structural

evidence is detected.

Preliminary Validations:

We validated the retro-linking algorithm on BAC\ of Table 6.2 as follows. Shotgun frag­

ments were experimentally sequenced at a 3X coverage of the BAC [McCombie (2005)], and

were assembled [Emrich (2005)] using the CAP3 assembler [Huang and Madan (1999)]. The

resulting 45 contigs were input along with the 1,939 LTR pairs (in Table 6.5) to our retro-

linking program. Note that the 1,939 LTR pairs do not include the 3 LTR pairs in BAC\ as

identified by LTR.par (Table 6.2) — that way, the validation reflects an assessment of retro-

linking under practical settings in which a target BAC sequence and its LTR pairs are unknown

prior to the retroscaffolding step. The experiment resulted in 44 contig groups (= |G|), and

upon investigation we found that most of the groups were "equivalent", i.e., the corresponding

LTR pairs share a significant sequence identity (> 95%). The equivalent groups were merged.

The subsequent step was to evaluate each contig pair of a merged, group for a valid retro-

link. For detecting retrotransposon genie sequences in contigs, we queried the contigs against

the GenBank nr database using the tblastx program. Other structural attributes were detected

using LTR^par. This step resulted in only two retro-linked pairs: (cj0 -> cie), and (c%4 —> C41)

with the arrows implying the order in which the contigs can be expected to occur along the

"unknown" BAC sequence (BACi) in the specified orientations. We verified the predictions

www.manaraa.com

119

copia element

><=10 G
> J l -e

> Cl6"

> 11 G

Prediction:
BACi
(unknown) > c\0 retro-link > cie

(OR)

> cï6 retro-link > cio

Truth:
BACi
(assembled)

J[LTR
^ ^ retror

JÏLTR

-e—

> ^ 6 > cio

> C41 C

>h G

gypsy element

> h
> C24 t

-G
t r

Prediction:
BACi
(unknown)

Truth:
BACi

> C24 retro-link > C41
(OR)

> C4! retro-link > ̂

(assembled)

JLLTR
^ ^ retror

JlLTR

-e—
> c: 41

> ^ 4

Figure 6.4 Validation of two retro-links — between contigs cio and cie, and
contigs C41 and C24. Vertically aligned ovals denote overlapping
regions, and squares denote retrotransposon hit through tblastx

against the GenBank nr database.

by aligning each of these 4 contigs directly against the known sequence of BAC\ and found

that the retroscaffolding prediction is correct (see Figure 6.4).

6.4 Scaffolding with Clone Mates and Retro-links

Retroscaffolding differs from conventional contig scaffolding as it relies on the presence of

LTR retrotransposons instead of the clone mate information. While this suggests that either of

the techniques can be applied independent of one another, the results may themselves be not

mutually exclusive — i.e., it is possible that the relative ordering and orientation between the

same two contigs are implied by both the techniques. While such redundancies in output can

be used as additional supporting evidence for bolstering the validity of scaffolding, the actual

value added by either of these two techniques is dictated by its respective unique share in

output scaffolding. Ideally, we would hope that these two results to complement one another.

We assessed the effect of a combined application of retroscaffolding and clone mate based

scaffolding on maize genomic contig data as follows: 62 contigs were generated by performing

a CAPS assembly over a 3X coverage set of fragments sequenced from BAC4. Ideally, all 62

www.manaraa.com

120

Clone mate Retroscaffolding Combined
scaffolding scaffolding

Number of scaffolds 32 5 27
Total span of scaffolds (bp) 120,350 65,605 138,356
Average span of scaffold (bp) 3,760 6,246 4,457
Number of contig pairs scaffolded 42 10 71
Number of assembly gaps covered 22 17 28

Table 6.6 Results of (i) scaffolding contig data for BAC4 (136,932 bp) using
clone mate information, (ii) retroscaffolding, and (iii) combined
scaffolding using both clone mate and retro-link information.

contigs would be part of just one "scaffold" if the contigs were all to be ordered along the

target BAC.

The scaffolding achievable from just the clone mate information was first assessed by run­

ning the Bambus [Pop et al. (2004)] program on the contigs. This resulted in 32 scaffolds

spanning an estimated total of 120,350 bp and each with an average span of 3,760 bp. (Note

that the "span" of a scaffold output by Bambus is only an estimate, because it includes the

size estimated for sequencing gaps between the scaffolded contigs.) We then assessed the scaf­

folding achieved by retroscaffolding the contig data — retro-links were first established using

the framework described in Section 6.3 and the output was transformed as input to Bambus.

While retroscaffolding resulted in many fewer scaffolds (5), the total span was smaller (65,605

bp) when compared to clone mate scaffolding. However, the average span of each scaffold was

almost twice as large in retroscaffolding. This is as expected because the distance constraint

used for each retro-link was longer ([5000,15000]) than that of clone mate links ([2200,3800]).

In the next step, we input both the retro-link and clone mate information with their

respective distance and orientation constraints to Bambus. This combination resulted in fewer

scaffolds (27) and a longer total span (138,356 bp) than was achieved by just clone mate

scaffolding — implying that retroscaffolding provides added information that is not provided

by clone mate information. The above results are summarized in Table 6.6. The table also

shows the number of contig pairs scaffolded as a result of the respective scaffolding strategies;

www.manaraa.com

121

the higher this number is, the more inclusive scaffolding is on the contigs — ideally, we would

expect all contigs to be in one scaffold thereby implying (^) contigs pairs.

We also assessed the individual effect of these scaffolding techniques on "assembly gaps" :

Each of the 62 contigs was individually aligned to the assembled BAC± sequence and the

stretch along which each has a maximum alignment score was selected to be its locus on the

BAC. A maximal stretch along the BAC not covered by any of the 62 contigs was considered

an "assembly gap". There were a total of 42 such gaps. For each of the three scaffolding

strategies (i.e., clone mate based, retroscaffolding and combined), an assembly gap is said

to be "covered" (alternatively, "not covered") if there exists a (alternatively, does not exist

any) pair of scaffolded contigs spanning the gap. Based on this definition, the number of

covered assembly gaps was 22 for clone mate scaffolding, 17 for retroscaffolding, and 28 for the

combined scaffolding. This further demonstrates the value added by retroscaffolding.

6.5 Discussion

Our preliminary studies on maize genomic (Section 6.2) and the experimental results on

maize contig data (Section 6.4) demonstrate a proof of concept and the value added by ret­

roscaffolding in genome assembly projects. For retroscaffolding to be effective in a genome

project, it is necessary that the LTR retrotransposons in the genome are both abundant and

distinguishable. LTR sequences within the same family of LTR retrotransposons are harder

to distinguish, and repeat-rich genomes (e.g., maize) could have numerous copies of the same

family scattered across the genome. Therefore, applying retroscaffolding at a genome level

may cause several spurious retro-links to be established, thereby confounding the process of

scaffolding. It is for this reason that retroscaffolding is more suited for genome projects involv­

ing hierarchical (e.g., BAC-by-BAC) sequencing. Retroscaffolding can also be used to order

and orient BACs, if the overlapping ends of two consecutive BACs along a tiling path span an

LTR retrotransposon.

In genome projects which generate clone mate information, the scaffolding information

derived from retroscaffolding may in part be already provided by clone mates. In the worst case,

www.manaraa.com

122

even if no new scaffolding information is provided by retroscaffolding, we can benefit from the

scaffolding information provided by retroscaffolding in two ways: (i) we will have information

about not only the genomic loci but also the composition of the assembly gaps covered by

retroscaffolding, as they are expected to contain sequences corresponding to a retrotransposon

insert. Therefore, we can prioritize the gaps to finish based on this information, and (ii) the

scaffolding output by retroscaffolding can be used to as supporting evidence to validate the

output of clone mate information.

Retroscaffolding will be useful in projects which do not generate clone mate information.

New sequencing technologies such as the 454 sequencing [Margulies et al. (2005)] that do

not generate clone mate information are increasingly becoming popular due to their high

throughput and cost-effectiveness. Such sequencing technologies may be an appropriate choice

for low-budget sequencing projects, and retroscaffolding could make the task of carrying out

the assembly in such projects practically feasible.

Retroscaffolding also provides a mechanism to explore the feasibility of a lower coverage

sequencing in genome projects. While reducing the sequencing coverage as low as 3X may

expose more gaps to span LTR retrotransposons in a target genome, it also implies that there

is less redundancy in fragment data. This might affect the quality of the output assembly,

especially of those contigs corresponding to the non-repetitive regions of the genome. To

circumvent this issue in a hierarchical sequencing project, we propose the following iterative

approach to sequencing and assembly: first, sequence all the BACs at a low coverage and

assemble them. If a subsequent retroscaffolding reveals the low repeat content in a subset of

the input BACs, then perform additional coverage sequencing selectively on these BACs, and

reassemble them with the fragments sequenced from all sequencing phases. In practice, this

procedure can be repeated until sufficient information is gathered to completely assemble and

scaffold each BAC. This approach provides a cost-effective mechanism to sequence repeat-rich

genomes without compromising on the quality of the output assembly.

www.manaraa.com

123

6.6 Concluding Remarks

Genome projects of several economically important plant crops such as maize, barley,

sorghum, wheat, etc., are either already underway or are likely to be initiated over the next few

years. Most of these plant genomes contain an enormous number of retrotransposons that are

not only expected to confound the assembly process, but are also expected to consume the bulk

of the sequencing and finishing budget. In contrast to this perspective, the retroscaffolding

approach proposed in this research offers the possibility of exploiting the abundance of LTR

retrotransposons, thus serving three main purposes: (i) to scaffold contigs that are output by

an assembler, (ii) to guide the process of finishing by providing information on the unfinished

regions of the genome, and (iii) to reduce sequencing coverage without loss of information

regarding the sequenced genes and their relative ordering. Given that sequencing and finishing

account for much of the cost in genome projects, continued research in developing this new

methodology further could have a high impact.

Several developments have been planned as future work on this research. Specifically, we

plan to evaluate the collective effectiveness of retroscaffolding and clone mate based scaffolding

at a larger scale. The algorithmic framework for retroscaffolding is still at an early stage of

development. Farther validation of the framework on sequenced genomes and at much larger

scales are essential to ensure an effective and high-quality application of our methodology in

forthcoming complex genome projects. To this effect, the application of retroscaffolding on the

on-going maize genome project will provide a good starting point.

www.manaraa.com

124

CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH

DIRECTIONS

The need for efficient computational methods for the advancement of genomics research

cannot be overemphasized. In this doctoral research, we (i) identified some key problems in

computational genomics that lead to sequence level discoveries of genes, transcriptomes and

genomes, (ii) advanced the state of research through the design and development of scalable

efficient algorithms and software solutions, and (iii) applied these new techniques on large real

world problem instances and established their biological relevance.

During the early stages of this research, we focused on developing an efficient solution

to the EST clustering problem, which has been actively pursued for over a decade. While

several approaches were developed prior to our effort, all these approaches were designed to

run on serial computers, and have quadratic run-time and/or memory requirements. Our

effort resulted in the development of the PaCE parallel clustering algorithm and software,

which we later extended to cluster fragment data in the context of gene-enriched genome

assembly. The novelty of the PaCE approach lies in its space and time efficiency and its

capability to exploit the vast computing power and memory easily available through distributed

memory parallel computers. The results of applying PaCE for clustering several large EST

data collections and for performing maize gene-enriched genome assembly demonstrate that

this research has significantly enhanced the problem size reach while also drastically reducing

the time to solution. To the best of our knowledge, the PaCE method is the first and only

available massively parallel approach. The PaCE software is freely available to the academic

community, and has been distributed to over 40 research groups as of this writing.

We also designed and developed an efficient algorithm and software program to identify LTR

www.manaraa.com

125

retrotransposons, which constitute one of the most abundant classes of repetitive elements in

several eukaryotic genomes. The results of validating our method, LTR_par, against benchmark

data shows both superior performance and quality in comparison to previously developed

approaches. The parallelization supported by our method also makes it a scalable solution for

identifying LTR retrotransposons in large genomes.

One of the important stages of a genome assembly project is to scaffold a set of assem­

bled contigs so that their order and orientation along a target genome can be identified, and

sequencing gaps filled through finishing efforts. In this dissertation, we introduced the ret­

roscaffolding problem which is a variant of the conventional contig scaffolding problem. This

new approach to achieving scaffolding does not depend on the availability of clone mate in­

formation, and can be useful in projects involving the 454 sequencing strategy. Moreover, in

projects where clone mate information is available, retroscaffolding would serve as additional

supporting evidence in the validity of clone mate links and/or complement the scaffolding in­

formation provided by clone mate information. Our results on maize BAG data demonstrate

the utility of retroscaffolding at providing both scaffolding information and valuable insights

that can be used to potentially reduce finishing and/or sequencing costs in projects targeted

for genomes with similar or higher LTR retrotransposon content.

Several functional and algorithmic improvements and developments can be carried out

along the lines of this dissertation research:

• The algorithmic ideas and techniques underlying the PaCE method can be easily ex­

tended for application in any overlap detection based problem that can be solved by

performing an all vs. all pairwise sequence comparison. This was partly demonstrated

by our application of the PaCE method for clustering DNA sequences in the context of

two different problems — EST clustering and gene-enriched genome assembly.

• The current functionality of PaCE is limited to analyzing a collection of one "type" of

DNA sequences — either EST or genomic fragments. This can generalized into a broader

functionality that has the capability to analyze a heterogenous collection of sequence data.

Several applications can benefit from such a generalized functionality (see [Emrich et al.

www.manaraa.com

126

(2005)] for details): (i) In a genome assembly project, detecting a contig that "overlaps"

with several ESTs can provide both structural information and expression evidence for

a corresponding gene on the contig; while an EST "overlapping" at its two ends to two

different contigs can be used to identify contigs spanning the same gene, (ii) In a sequence

clustering project, sequences may be available over a period of time. It is sufficient to

detect overlaps between the already clustered sequences and a new batch of sequences

to effect an incremental clustering. For this purpose, we can treat the already clustered

sequences as one "type" and the new batch as another.

To achieve this generic functionality of analyzing heterogenous sequence databases, the

PaCE clustering problem formulation can be expanded into a "rule"-based clustering

formulation, in which pairwise sequence overlaps are expected to arise only between

sequences of different types and the overlap detection mechanism is dictated by the type

of sequences being compared — eg., an overlap between a contig and EST can be detected

through a spliced alignment technique, while an overlap between a contig and a protein

sequence can be detected through a DNA-protein alignment technique.

• Besides LTR retrotransposons, there are several other types of DNA retrotransposons,

one of which is called the Miniature Inverted Transposable Elements (or MITEs). Al­

though much smaller in their lengths, the MITEs have a structure similar to that of LTR

retrotransposons. They are characterized by inverted terminal repeats (as opposed to

terminal repeats in the same direction in LTR retrotransposons), target site duplications,

and a non-coding internal sequence. It will be interesting to see if the ideas underlying

our LTR-par algorithm can be extended for identifying MITEs.

www.manaraa.com

127

BIBLIOGRAPHY

Adams, M., Celniker, S., Holt, R. et al. (2000). The genome sequence of Drosophila

melanogaster. Science, 287(5461):2185-2195.

Adams, M., Kelley, J., Gocayne, J. et al. (1991). Complementary DNA sequencing: expressed

sequence tags and human genome project. Science, 252(5013):1651-1656.

Adiga, N., Almasi, G., Almasi, G. et al. (2002). An Overview of the BlueGene/L Supercom­

puter. In Proc. IEEE/ACM Supercomputing Conference.

Altschul, S., Gish, W., Miller, W. et al. (1990). Basic local alignment search tool. Journal of

Molecular Biology, 215:403-410.

Aluru, S. and Ko, P. (2005). Chapter 5: Lookup tables, suffix trees and suffix arrays. In

Handbook of computational molecular biology. CRC Press.

Apostolico, A., Iliopoulos, C., Landau, G., et al. (1988). Parallel construction of a suffix tree

with applications. Algorithmica, 3:347-365.

Bailey, L., Sear Is, D., and Overton, G. (1998). Analysis of EST-Driven Gene Annotation in

Human Genomic Sequence. Genome Research, 8(4):362-376.

Baldo, M., Lennon, G., and Soares, M. (1996). Normalization and subtraction: Two approaches

to facilitate gene discovery. Genome Research, 6:791-806.

Bao, Z. and Eddy, S. (2002). Automated de novo identification of repeat sequence families in

sequenced genomes. Genome Research, 12:1269-1279.

www.manaraa.com

128

Batzoglou, S., Jaffe, D., Stanley, K. et al. (2002). ARACHNE a whole-genome shotgun assem­

bler. Genome Research, 12(1):177-189.

Bennetzen, J. (1996). The contributions of retroelements to plant genome organization, func­

tion and evolution. Trends in Microbiology, 4(9):347-353.

Boguski, M., Lowe, T., and Tolstoshev, C. (1993). dbEST - database for "expressed sequence

tags". Nature Genetics, 4(4):332-333.

Boguski, M. and Schuler, G. (1995). ESTablishing a human transcript map. Nature Genetics,

10(11):369-371.

Boguski, M., Tolstoshev, C. and Bassett, D.E. Jr. (1994). Gene discovery in dbEST. Science,

265(5181):1993-1994.

Bono, H., Kasukawa, T., Furuno, M. et al. (2002). FANTOM OB: database of Functional

Annotation of RIKEN Mouse cDNA Clones. Nucleic Acids Research, 30(1):116-118.

Burke, J., Davison, D., and Hide, W. (1999). d2_cluster: A validated method for clustering

EST and full-length cDNA sequences. Genome Research, 9(11):1135-1142.

Burke, J., Wang, H., Hide, W., and Davison, D. (1998). Alternative gene form discovery and

candidate gene selection from gene indexing projects. Genome Research, 8(3):276-290.

Bushman, F. (2003). Targeting survival: integration site selection by retroviruses and LTR-

retrotransposons. Cell, 115:135-138.

Camargo, A., Samaia, H., Dias-Neto, E. et al. (2001). From the Cover: The contribution of

700,000 ORF sequence tags to the definition of the human transcriptome. Proc. National

Academy of Sciences, 98(21):12103-12108.

Carninci, P., Waki, K., Shiraki, T. et al. (2003). Targeting a Complex Transcriptome: The

Construction of the Mouse Full-Length cDNA Encyclopedia. Genome Research, 13(6):1273-

1289.

www.manaraa.com

129

Caron, H., Schaik, B., Mee, M. et ai (2001). The human transcriptome map: Clustering of

highly expressed genes in chromosomal domains. Science, 291(5507):1289-1292.

Carpenter, J., Christoffels, A., Weinbach, Y., and Hide, W. (2002). Assessment of the par-

allelization approach of d2_cluster for High Performance Sequence Clustering. Journal of

Computational Chemistry, 23(7):755-757.

Carulli, J., Artinger, M., Swain, P. et ai (1999). High throughput analysis of differential gene

expression. Journal of Cellular Biochemistry, 72(S30-31):286-296.

Charlesworth, B., Sniegowski, P., and Stephan, W. (1994). The evolutionary dynamics of

repetitive DNA in eukaryotes. Nature, 371:215-220.

Chomczynski, P. and Sacchi, N. (1987). Single-step method of RNA isolation by acid guani-

dinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry, 162(1):156-159.

Chou, H. and Holmes, M. (2001). DNA sequence quality trimming and vector removal. Bioin-

formatics, 17(12) :1093-1104.

Christoffels, A., Gelder, A., Grey ling, G. et ai (2001). STACK Sequence Tag Alignment and

Consensus Knowledgebase. Nucleic Acids Research, 29(l):234-238.

Coffin, J., Hughes, S., and Varmus, H. (1997). Retroviruses. Plantview.

Collins, F., Guyer, M., and Chakravarti, A. (1997). Variations on a theme: cataloging human

DNA sequence variation. Science, 278(5343): 1580-1581.

Consortium, I. H. G. S. (2001). Initial sequencing and analysis of the human genome. Nature,

409:860-921.

Delcher, A., Kasif, S., Fleischmann, R. et al. (1999). Alignment of whole genomes. Nucleic

Acids Research, 27(ll):2369-2376.

Duguid, J. and Dinauer, M. (1990). Library subtraction of in vitro cDNA libraries to identify

differentially expressed genes in scrapie infection. Nucleic Acids Research, 18(9):2789-2792.

www.manaraa.com

130

Emrich, S. (2005). Personal Communication.

Emrich, S., Kalyanaraman, A., and Aluru, S. (2005). Chapter 13: Algorithms for large-scale

clustering and assembly of biological sequence data. In Handbook of computational molecular

biology. CRC Press.

Emrich, S. J., Aluru, S., Pu, Y. et al. (2004). A strategy for assembling the maize (Zea mays

L.) genome. Bioinformatics, 20:140-147.

Ewing, R., Kahla, A., Poirot, O. et al. (1999). Large-Scale Statistical Analyses of Rice ESTs

Reveal Correlated Patterns of Gene Expression. Genome Research, 9(10):950-959.

Fargnoli, J., Holbrook, N., and Fornace, A.J. Jr. (1990). Low-ratio hybridization subtraction.

Analytical Biochemistry, 187(2):364-373.

Feschotte, C., Jiang, N., and Wessler, S. (2002). Plant transposable elements: Where genetics

meets genomics. Nature Reviews (Genetics), 3:329-341.

Fickett, J. (1984). Fast optimal alignment. Nucleic Acids Research, 12(1):175-179.

Flavell, R. (1986). Repetitive DNA and chromosome evolution in plants. Philosophical Trans­

actions of the Royal Society of London. B., 312:227-242.

Franchini, L., Ganko, E., and McDonald., J. (2004). Retrotransposon-gene associations are

wide-spread among D.melanogaster populations. Molecular Biology and Evolution, 21:1323-

1331.

Fu, Y., Emrich, S., Guo, L. et al. (2005). Quality assessment of Maize Assembled Genomic

Islands (MAGIs) and large-scale experimental verification of predicted novel genes. Proc.

National Academy of Sciences USA, 102:12282-12287.

Gai, X. (2005). Personal Communication.

Ganko, E., Bhattacharjee, V., Schliekelman, P., and McDonald, J. (2003). Evidence for the

contribution of LTR retrotransposons to C. elegans gene evolution. Molecular Biology and

Genetics, 20:1925-1931.

www.manaraa.com

131

Garg, K., Green, P., and Nickerson, D. (1999). Identification of candidate coding region single

nucleotide polymorphisms in 165 human genes using assembled expressed sequence tags.

Genome Research, 9(11):1087-1092.

Gautheret, D., Poirot, O., Lopez, F. et al. (1998). Alternate Polyadenylation in Human

mRNAs: A Large-Scale Analysis by EST Clustering. Genome Research, 8(5):524-530.

Gelfand, M. S., Mironov, A., and Pevzner, P. (1996). Gene recognition via spliced alignment.

Proc. National Academy of Sciences, 93(17):9061-9066.

Gotoh, O. (1982). An improved algorithm for matching biological sequences. Journal of

Molecular Biology, 162(3):705-708.

Grandbastien, M., Spielmann, A., and Caboche, M. (1989). Tntl, a mobile retroviral-like

transposable element of tobacco isolated by plant cell genetics. Nature, 337:376-380.

Green, P. (1994, (Date accessed 12 Apr 2003)). Phrap - the assembler, http//www.phrap.org.

Gropp, W., Lusk, E., Doss, N., and Skjellum, A. (1996). A high-performance, portable imple­

mentation of the MPI message passing interface standard. Parallel Computing, 22:789-828.

Gusfield, D. (1997a). Algorithms on strings, trees and sequences Computer Science and Com­

putational Biology. Cambridge University Press, Cambridge, London.

Gusfield, D. (1997b). Algorithms on strings, trees and sequences: Computer Science and

Computational Biology. Cambridge University Press, Cambridge, London.

Hariharan, R. (1997). Optimal parallel suffix tree construction. Journal of Computer and

System Sciences, 55(l):44-69.

Havlak, P., Chen, R., Durbin, K. et al. (2004). The ATLAS genome assembly system. Genome

Research, 14:721-732.

Hirochika, H., Sugimoto, K., Otsuki, Y. et al. (1996). Retrotransposons of rice involved in

mutations induced by tissue culture. Proc. National Academy of Sciences, 93(15):7783-7788.

http://www.phrap.org

www.manaraa.com

132

Hirschberg, D. (1975). A linear space algorithm for computing maximal common subsequences.

Communications of the ACM, 18(6):341—343.

Huang, X. (2005). Chapter 8: Computational methods for genome assembly. In Handbook of

computational molecular biology. CRC Press.

Huang, X., Adams, M., Zhou, H., and Kerlavage, A. (1997). A tool for analyzing and anno­

tating genomic sequences. Genomics, 46:37-45.

Huang, X. and Chao, K. (2003). A generalized global alignment algorithm. Bioinformatics,

19(2):228-233.

Huang, X. and Madan, A. (1999). CAP3: A DNA sequence assembly program. Genome

Research, 9(9):868-877.

Huang, X., Wang, J., Aluru, S. et al. (2003). PCAP: A whole-genome assembly program.

Genome Research, 13:2164-2170.

Huson, D., Reinert, K., and Myers, E. (2001). The greedy pathmerging algorithm for se­

quence assembly. In Proc. International Conference on Research in Computational Biology

(RECOMB), pages 157-163.

Jackson, B. and Aluru, S. (2005). Chapter 1: Pairwise sequence alignment. In Handbook of

computational molecular biology. CRC Press.

Jaffe, D., Butler, J., Gnerre, S. et al. (2003). Whole-genome sequence assembly for mammalian

genomes: Arachne 2. Genome Research, 13:91-96.

Jain, A. and Dubes, R. (1988). Algorithms for clustering data. Prentice Hall, Englewood Cliffs,

NJ.

Jiang, J. and Jacob, H. (1998). EbEST: An Automated Tool Using Expressed Sequence Tags

to Delineate Gene Structure. Genome Research, 8(3):268-275.

Johns, M., Mottinger, J., and Freeling, M. (1985). A low copy number, copia-like transposon

in maize. The EMBO Journal, 4(5):10931101.

www.manaraa.com

133

Jordan, I. and McDonald, J. (1999). Comparative genomics and evolutionary dynamics of

Saccharomyces cerevisiae Ty elements. Genetica, 107:3-13.

Kalyanaraman, A. (2002). Parallel clustering of expressed sequence tags. Masters Thesis, Iowa

State University.

Kalyanaraman, A. and Aluru, S. (2005a). Chapter 12: Expressed Sequence Tags: Clustering

and applications. In Handbook of computational molecular biology. CRC Press.

Kalyanaraman, A. and Aluru, S. (2005b). Efficient algorithms and software for detection of

full-length LTR retrotransposons. In Proc. IEEE Computational Systems Bioinformatics

Conference, pages 56-64.

Kalyanaraman, A. and Aluru, S. (2006). Efficient algorithms and software for detection of

full-length LTR retrotransposons. Journal of Bioinformatics and Computational Biology,

4(2):197-216.

Kalyanaraman, A., Aluru, S., Brendel, V., and Kothari, S. (2003a). Space and time efficient

parallel algorithms and software for EST clustering. IEEE Transactions on Parallel and

Distributed Systems, 14(12):1209-1221.

Kalyanaraman, A., Aluru, S., Kothari, S., and Brendel, V. (2003b). Efficient clustering of

large EST data sets on parallel computers. Nucleic Acids Research, 31(ll):2963-2974.

Kalyanaraman, A., Aluru, S., and Schnable, P.S. (2006a). Turning repeats to advantage: Scaf­

folding genomic contigs using LTR retrotransposons. In Proc. LSS Computational Systems

Bioinformatics Conference.

Kalyanaraman, A., Emrich, S., Schnable, P.S., and Aluru, S. (2006b). Assembling genomes

on large-scale parallel computers. In Proc. IEEE International Parallel and Distributed

Processing Symposium.

Kan, Z., Rouchka, E., Gish, W., and States, D. (2001). Gene Structure Prediction and Alterna­

tive Splicing Analysis Using Genomically Aligned ESTs. Genome Research, ll(5):889-900.

www.manaraa.com

134

Kapros, T., Robertson, A., and Waterborg, J. (1994). A simple method to make better probes

for short DNA fragments. Molecular Biotechnology, 2(l):95-98.

Karkkainen, J. and Sanders, P. (2003). Simple linear work suffix array construction. Lecture

Notes in Computer Science, 2719:943-955.

Karkkanen, J. and Sander, P. (2003). Simpler linear work suffix array construction. In Proc.

International Colloquium on Automata, Languages and Programming.

Kasai, T., Lee, G., Arimura, H. et al. (2001). Linear-time longest-common-prefix computation

in suffix arrays and its applications. In Proc. Combinatorial Pattern Matching, pages 181—

192.

Kidwell, M. and Lisch, D. (1997). Transposable elements as sources of variation in animals

and plants. Proc. National Academy of Sciences, 94:7704-7711.

Kim, D., Sim, J., Park, H., and Park, K. (2003). Linear-time construction of suffix arrays.

Lecture Notes in Computer Science, 2676:186-199.

Kim, J., Vanguri, S., Boeke, J. et al. (1998). Transposable Elements and Genome Organization:

A Comprehensive Survey of Retrotransposons Revealed by the Complete Saccharomyces

cerevisiae Genome Sequence. Genome Research, 8:464-478.

Ko, P. and Aluru, S. (2003). Space efficient linear time construction of suffix arrays. In Proc.

Combinatorial Pattern Matching, pages 200-210.

Kurtz, S., Choudhuri, J., Ohlebusch, E. et al. (2001). REPuter: the manifold applications of

repeat analysis on a genomic scale. Nucleic Acids Research, 29:4633-4642.

Kurtz, S. and Schleiermacher, C. (1999). REPuter: fast computation of maximal repeats in

complete genomes. Bioinformatics, 15:426-427.

Lander, E. and et al. (2001). Initial sequencing and analysis of the human genome. Nature,

409:860-921.

www.manaraa.com

135

Liang, F., Holt, I., Pertea, G. et al. (2000). An optimized protocol for analysis of EST se­

quences. Nucleic Acids Research, 28(18):3657-3665.

Malde, K., Coward, E., and Joassen, I. (2003). Fast sequence clustering using a suffix array

algorithm. Bioinformatics, 19(10):1221-1226.

Manber, U. and Myers, G. (1993). Suffix arrays: A new method for on-line search. SIAM

Journal of Computing, 22:935-948.

Mao, M., Fu, G., Wu, J., Zhang, Q. et al. (1998). Identification of genes expressed in human

CD34+ hematopoietic stem/progenitor cells by expressed sequence tags and efficient full-

length cDNA cloning. Proc. National Academy of Sciences, 95(14):8175-8180.

Margulies, M., Egholm, M., Altman, W. et al. (2005). Genome sequencing in microfabricated

high-density picolitre reactors. Nature, pages 376-380.

Marth, G., Korf, I., Yandell, M. et al. (1999). A general approach to single-nucleotide poly­

morphism discovery. Nature Genetics, 23:452-456.

McCarthy, E., Liu, L., Lizhi, G., and McDonald, J. (2002). Long terminal repeat retrotrans­

posons of oryza sativa. Genome Biology, 3:0053.1-0053.11.

McCarthy, E. and McDonald, J. (2003). LTR_STRUC: a novel search and identification

program for LTR retrotransposons. Bioinformatics, 19:362-367.

McCarthy, E. and McDonald, J. (2004). LTR Retrotransposons of Mus musculus. Genome

Biology, 5:R14.

McCombie, R. (2005). Personal Communication.

McCreight, E. (1976). A space economical suffix tree construction algorithm. Journal of the

ACM, 23:262-272.

Meyers, B., Tingey, S., and Morgante, M. (1998). Abundance, distribution, and transcriptional

activity of repetitive elements in the maize genome. Science, 274:765-768.

www.manaraa.com

136

Miguel, P. (2005). Personal Communication.

Miller, J., Dong, F., Jackson, S. et al. (1998). Retrotransposon-related DNA sequences in the

centromeres of grass chromosomes. Genetics, 150:1615-1623.

Miller, R., Christoffels, A., Gopalakrishnan, C. et al. (1999). A Comprehensive Approach to

Clustering of Expressed Human Gene Sequence: The Sequence Tag Alignment and Consen­

sus Knowledge Base. Genome Research, 9(11):1143-1155.

Mironov, A., Fickett, J., and Gelfand, M. (1999). Frequent alternative splicing of human genes.

Genome Research, 9(12):1288-1293.

Modrek, B. and Lee, C. (2002). A genomic view of alternative splicing. Nature genetics,

30:13-19.

Modrek, B., Resch, A., Grasso, C., and Lee, C. (2001). Genome-wide detection of alternative

splicing in expressed sequences of human genes. Nucleic Acid Research, 29(13):2850-2859.

Morgante, M., Policriti, A., Vitacolonna, N., and Zuccolo, A. (2002). Automated search for

LTR retrotransposons. http://citeseer.ist.psu.edu/644336.html.

Mullikin, J. and Ning, Z. (2003). The phusion assembler. Genome Research, 13:81-90.

Myers, E., Sutton, G., Delcher, A. et al. (2000). A Whole-Genome Assembly of Drosophila.

Science, 287:2196-2204.

Needleman, S. and Wunsch, C. (1970). A general method applicable to the search for similar­

ities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48:443-453.

Nelson, M., Kang, S., Braun, E. et al. (1997). Expressed sequences from conidial, mycelial,

and sexual stages of Neurospora crassa. Fungal Genetics and Biology, 21:348-363.

NSF (2005). NSF, USDA and DOE Award $32 Million to Sequence Corn Genome.

http://www.nsf.gov/news/newssumm.jsp?cntn.id=104608&org=BIO&from=news, Press

Release 05-197.

http://citeseer.ist.psu.edu/644336.html
http://www.nsf.gov/news/newssumm.jsp?cntn.id=104608&org=BIO&from=news

www.manaraa.com

137

Okazaki, Y., Furuno, M., Kasukawa et al. (2002). Analysis of the mouse transcriptome based

on functional annotation of 60,770 full-length cDNAs. Nature, 420:563-573.

Palmer, L., Rabinowicz, P., O'Shaughnessy, A. et al. (2003). Maize genome sequencing by

Methylation Filtration. Science, 302(5653):2115-2117.

Patanjali, S., Parimoo, S., and Weissman, S. (1991). Construction of a uniform-abundance

(normalized) cDNA library. Proc. National Academy of Sciences, 88(5):1943-1947.

Pedretti, K. (2001). Accurate, parallel clustering of EST (gene) sequences. Masters Thesis,

University of Iowa.

Pennisi, E. (2005). Cut-rate genomes on the horizon? Science, 309(5736) =862-862.

Pertea, G., Huang, X., Liang, F. et al. (2003). TIGR Gene Indices clustering tool (TGICL) a

software system for fast clustering of large EST datasets. Bioinformatics, 19(5):651-652.

Peterson-Burch, B., Nettleton, D., and Voytas, D. (2004). Genomic Neighbourhoods for Ara-

bidopsis retrotransposons: a role for targeted integration in the distribution of the Metaviri-

dae. Genome Biology, 5:R78.

Picoult-Newberg, L., Ideker, T., Pohl, M. et al. (1999). Mining SNPs From EST Databases.

Genome Research, 9(2):167-174.

Polavarapu, N. (2005). Personal Communication.

Polavarapu, N., Bowen, N., and McDonald, J. (2006). Identification, characterization and

comparative genomics of chimpanzee endogenous retroviruses. Genome Biology, In Press.

Pontius, J., Wagner, L., and Schuler, G. (2003). UniGene a unified view of the transcriptome.

The NCBI Handbook.

Pop, M., Kosack, D., and Salzberg, S. (2004). Hierarchical scaffolding with Bambus. Genome

Research, 14:149-159.

www.manaraa.com

138

Pop, M., Salzberg, S., and Shumway, M. (2002). Genome sequence assembly: algorithms and

issues. IEEE Computer, 35(7):47 54.

Promislow, D., Jordan, I., and McDonald, J. (1999). Genomic demography: a life-history

analysis of transposable element evolution. Proc. Royal Society of London B: Biological

Sciences, 266(1428):1555-1560.

Quackenbush, J., Liang, F., Holt, I. et al. (2000). The TIGR gene indices reconstruction and

representation of expressed gene sequences. Nucleic Acids Research, 28(1):141-145.

Rabinowicz, P., Schutz, K., Dedhia, N. et al. (1999). Differential methylation of genes and

retrotransposons facilitates shotgun sequencing of the maize genome. Nature Genetics,

23:305-308.

Rajko, S. and Aluru, S. (2004). Space and time optimal parallel sequence alignments. IEEE

Transactions on Parallel and Distributed Systems, 15(12):1070-1081.

Rounsley, S., Glodek, A., Sutton, G. et al. (1996). The construction of Arabidopsis expressed

sequence tag assemblies. Plant Physiology, 112:1177-1183.

Sanger, F. and Coulson, A. (1975). A rapid method for determining sequences in DNA by

primed synthesis with DNA polymerase. Journal of Molecular Biology, 94(3)=441-448.

Sanger, F., Coulson, A., Hong, G. et al. (1982). Nucleotide sequence of bacteriophage lambda

DNA. Journal of Molecular Biology, 162:729-773.

Sanger, F., Nicklen, S., and Coulson, A. (1977). DNA sequencing with chain-terminating

inhibitors. Proc. National Academy of Sciences USA, 74(12):5463-5467.

SanMiguel, P., Gaut, B., Tikhonov, A. et al. (1998). The paleontology of intergene retrotrans­

posons of maize. Nature Genetics, 20:43-45.

SanMiguel, P., Tikhonov, A., Jin, Y. et al. (1996). Nested retrotransposons in the intergenic

regions of the maize genome. Science, 274:765-768.

www.manaraa.com

139

Satou, Y., Yamada, L., Mochizuki, Y. et al. (2002). A cDNA resource from the Basal Chordate

Ciona intestinalis. Genesis, 33:153-154.

Schlueter, S., Dong, Q., and Brendel, V. (2003). GeneSeqer@PlantGDB: gene structure pre­

diction in plant genomes. Nucleic Acids Research, 31(13):3597-3600.

Schmid, D. and Girou, C. (1987). Cloning of cDNA derived from mRNA of the electric lobe

of Torpedo marmorata and selection of putative cholinergic-specific sequences. Journal of

Neurochemistry, 48(1):307-312.

Schweinfest, C., Henderson, K., Gu, J. et al. (1990). Subtraction hybridization cDNA libraries

from colon carcinoma and hepatic cancer. Genetic Analysis : Techniques and Applications,

7(3)=64-70.

Seki, M., Narusaka, M., Kamiya, A. et al. (2002). Functional annotation of a full-length

Arabidopsis cDNA collection. Science, 296(5565):141-145.

Sequencing, T. C. and Consortium, A. (2005). Initial sequence of the chimpanzee genome and

comparison with the human genome. Nature, 437:69-87.

Setubal, J. and Meidanis, J. (1997). Introduction to computational molecular biology. PWS

Publishing Company, Boston, MA.

Sherry, S., Ward, M., Kholodov, M. el al. (2001). dbSNP: the NCBI database of genetic

variation. Nucleic Acids Research, 29(1):308-311.

Smit, A. and Green, P. (1999). RepeatMasker. http://ftp.genome.washington.edu/RM/ Re-

peatMasker. html.

Smith, T. and Waterman, M. (1981). Identification of common molecular subsequences. Jour­

nal of Molecular Biology, 147:195-197.

Soares, M., Bonaldo, M., Jelene, P. et al. (1994). Construction and characterization of a

normalized cDNA library. Proc. National Academy of Sciences, 91(20):9228-9232.

www.manaraa.com

140

Stapleton, M., Liao, G., Brokstein, P. et al. (2002). The Drosophila Gene Collection: Identifi­

cation of Putative Full-Length cDNAs for 70% of D. melanogaster Genes. Genome Research,

12(8):1294-1300.

Sutton, G., White, O., Adams, M., and Kerlavage, A. (1995). TIGR assembler: A new tool

for assembling large shotgun sequencing projects. Genome Science and Technology, 1:9-19.

Tarjan, R. (1975). Efficiency of a good but not linear set union algorithm. Journal of the

ACM, 22(2):215-225.

Ton, C., Hwang, D., Dempsey, A. et al. (2000). Identification, characterization, and mapping of

expressed sequence tags from an embryonic zebrafish heart cdna library. Genome Research,

10(12):1915-1927.

Torney, D., Burks, C., Davison, D., and Sirotkin, K. (1990). Computers and DNA. Addison-

Wesley, New York.

Travis, G. and Sutcliffe, J. (1988). Phenol emulsion-enhanced DNA-driven subtractive cDNA

cloning: isolation of low-abundance monkey cortex-specific mRNAs. Proc. National Academy

of Sciences, 85(5): 1696-1700.

Trivedi, N., Bischof, J., Davis, S. et al. (2002). Parallel creation of non-redundant gene indices

from partial mRNA transcripts. Future Generation Computer Systems, 18:863-870.

Ukkonen, E. (1992). Approximate string-matching with q-grams and maximal matches. The­

oretical Computer Science, 92(1):191-211.

Ukkonen, E. (1995). On-line construction of suffix trees. Algorithmica, 14:249-260.

Usuka, J., Zhu, W., and Brendel, V. (2000). Optimal spliced alignment of homologous cDNA

to a genome database ZmDB. Bioinformatics, 16(3):203-211.

VanBuren, V., Piao, Y., Dudekula, 0. et al. (2002). Assembly, verification, and initial anno­

tation of the NIA mouse 7.4K cDNA clone set. Genome Research, 12(12):1999-2003.

www.manaraa.com

141

Varagona, M., Purugganan, M., and Wessler, S. (1992). Alternative splicing induced by inser­

tion of retrotransposons into the maize waxy gene. Plant Cell, 4:811-820.

Velculescu, V., Zhang, L., Vogelstein, B., and Kinzler, K. (1995). Serial analysis of gene

expression. Science, 270(5235):484-487.

Venter, J., Adams, M., Myers, E. et al. (2001a). The sequence of the human genome. Science,

291:1304-1351.

Venter, J., Adams, M., Myers, E. et al. (2001b). The sequence of the human genome. Science,

291:1304-1351.

Venter, J., Remington, K., Heidelberg, J. et al. (2004). Environmental genome shotgun se­

quencing of the Sargasso Sea. Science, 304(5667):66-74.

Vicienta, C., Suoniemia, A., Anamthawat-Jnssonb, K. et al. (1999). Retrotransposon BARE-1

and Its Role in Genome Evolution in the Genus Hordeum. Plant Cell, 11:1769-1784.

Weiner, P. (1973). Linear pattern matching algorithm. In Proc. 14th IEEE Symposium on

Switching and Automata Theory, pages 1-11.

Wessler, S., Bureau, T., and White, S. (1995). LTR-retrotransposons and MITEs: important

players in the evolution of plant genomes. Current Opinion In Genetics and Development,

5:814-821.

Wheeler, D., Barrett, T., Benson, D. et al. (2005). Database resources of the National Center

for Biotechnology Information. Nucleic Acids Research, 33:D39-D45.

White, S., Habera, L., and Wessler, S. (1994). Retrotransposons in the Flanking Region of

Normal Plant Genes: A Role for Copia-Like Elements in the Evolution of Gene Structure

and Expression. Proc. National Academy of Sciences, 91:11792-11796.

Whitfield, C., Band, M., Bonaldo, M. et al. (2002). Annotated expressed sequence tags and

cDNA microarrays for studies of brain and behavior in the honey bee. Genome Research,

12(4):555-566.

www.manaraa.com

142

Xiong, Y. and Eickbush, T. (1990). Origin and evolution of retroelements based upon their

reverse transcriptase sequences. EMBO Journal, 9:3353-3362.

Ye, Z. and Parry, J. (2002). The discovery and confirmation of single nucleotide polymorphisms

in the human p53R2 gene by EST database analysis. Mutagenesis, 17(5):361-364.

Yuan, Y., SanMiguel, P., and Bennetzen, J. (2003). High-Cot sequence analysis of the maize

genome. The Plant Journal, 34:249-255.

Zhang, Z., Shwartz, S., Wagner, L., and Miller, W. (2000). A greedy algorithm for aligning

DNA sequences. Journal of Computational Biology, 7(l-2):203-214.

Zhu, T. and Wang, X. (2000). Large-Scale Profiling of the Arabidopsis Transcriptome. Plant

Physiology, 124:1472-1476.

Zhu, W., Schlueter, S., and Brendel, V. (2003). Refined annotation of the Arabidopsis thaliana

genome by complete Expressed Sequence Tag mapping. Plant Physiology, 132:469-484.

	2006
	Large-scale methods in computational genomics
	Anantharaman Kalyanaraman
	Recommended Citation

	tmp.1410287394.pdf.qoE3F

