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ABSTRACT 

Computational genomics is the study of the composition, structure, and function of genetic 

material in living organisms through computational means. The focus of research in compu

tational genomics over the past two decades has primarily been the understanding of genomes 

and their numerous functional elements through the analysis of biological sequence data. The 

explosive growth in sequence data coupled with the design and deployment of increasingly 

high throughput sequencing technologies has created a need for methods capable of process

ing large-scale sequence data in a time and cost effective manner. In this dissertation, we 

address this need through the development of faster algorithms, space-efficient methods, and 

high-performance parallel computing techniques in the context of some key problems involving 

large-scale sequence analysis. 

The first problem we address is the clustering of large collections of DNA sequences based 

on a measure of sequence similarity. Let n denote the number of input sequences, and I 

denote the average length of a sequence. We developed a new sequence clustering framework 

with the following novel features: (i) a space-efficient algorithm to limit the worst-case space 

complexity to 0(nxZ), in contrast to the 0(n2 + nxl) space required by most of the previously 

developed approaches; (ii) an algorithm to identify pairs of sequences containing long maximal 

matches, that generates these pairs on-demand in the decreasing order of their maximal match 

lengths in 0(n x I + number of pairs) run-time; (iii) a combination of algorithmic heuristics 

to significantly reduce the number of pairs evaluated for checking sequence similarity while 

maintaining the quality of clustering; and (iv) parallel strategies that provide linear speedup 

and a proportionate reduction in space per processor to facilitate large-scale clustering. We 

applied our clustering approach in the context of two biological applications — clustering 

Expressed Sequence Tags (ESTs), and genome assembly. The results demonstrate that our 
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approach has significantly enhanced the problem size reach while also drastically reducing the 

time to solution. To the best of our knowledge, this is the first parallel solution to scale with 

a linear speedup on thousands of processors. We implemented our algorithm into a software 

program called PaCE. 

Identical or highly similar copies of the same sequence can be present in numerous locations 

of a genome. Such sequences are called repeats. The next problem we address is the de novo 

detection of repeats called LTR retrotransposons. Given a genome of length n, our algorithm 

to detect LTR retrotransposons has the following characteristics: (i) a space complexity of 

0(n); (ii) a method to produce high quality candidates for prediction in 0(n + number of 

candidates) run-time; and (iii) a thorough evaluation of each candidate to ensure high quality 

prediction. Validation of our approach on the yeast genome demonstrates both superior quality 

and performance results when compared to existing software. We implemented our algorithm 

into a software program called LTR-par, which can be run on both serial and parallel computers. 

In a genome assembly project, the fragments experimentally sequenced from a target 

genome are computationally assembled into "contigs" that represent the various contiguous 

genomic stretches from which the fragments were sampled. The next task is called scaffolding 

which is to order these contigs along the target genome. In this dissertation, we introduce a 

new problem called retroscaffolding for ordering contigs based on the knowledge of their LTR 

retrotransposon content and present an algorithm to achieve the same. Through identification 

of sequencing gaps that span LTR retrotransposons, retroscaffolding provides a mechanism for 

prioritizing sequencing gaps for finishing purposes. Our solution for retroscaffolding combines 

the techniques in PaCE for detecting pairs of similar sequences and the techniques in LTR_par 

for detecting LTR retrotransposons. 

While many of the problems addressed in this dissertation have been studied previously, 

the main contribution in this dissertation is the development of methods that can scale to the 

largest available sequence data collections. As an illustration, we clustered the mouse EST 

collection in GenBank, which is the second largest available EST collection with «3.78 million 

ESTs, in just under 10 hours using 1,024 processors of an IBM BlueGene/L supercomputer. 
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CHAPTER 1. INTRODUCTION 

DNA or Deoxyribonucleic Acid is one of the fundamental molecular entities inside a cell 

of a living organism. DNA encodes the genetic instructions for a cell to carry out its cellular 

development, and is also the hereditary material of an organism. An eukaryotic cell contains 

DNA molecules both inside its nucleus (as chromosomes), and outside (as mitochondrial and 

chloroplast DNA). All cells in an organism contain copies of the same set of DNA molecules. 

The term genome is used to collectively refer to all the DNA molecules within a cell. For 

example, the human genome consists of 23 pairs of chromosomes and a mitochondrial DNA. 

Along a genome are various segments called genes that encode for proteins and Ribonucleic 

Acids (or RNAs) that carry out designated cellular functions. Transcription is a biological 

process by which portions of a gene is copied into an RNA molecule. These RNA molecules 

are subsequently released into the cytoplasm of the cell, where they are translated into their 

corresponding protein molecules. 

A DNA molecule contains two strands intertwined in the form of a double helix. Each 

strand has molecules bonded to one another as a chain or sequence of four nucleotides: Adenine, 

Cytosine, Guanine and Thymine, abbreviated as A, C, G, and T. Nucleotides are also referred 

to as bases. The nucleotides along the two strands are linked to one another by a complementary 

relationship: A T and C O G\ therefore, the sequence of one strand can be inferred from 

the sequence of the other. For this reason, the sequence length of a DNA molecule is typically 

measured in base pairs (bp). In contrast to a DNA molecule, an RNA molecule is single 

stranded and contains Uracil ( U) instead of Thymine. 

The process of determining the sequence of a DNA molecule is called sequencing. While 

the structure of a DNA molecule was discovered in the early 1950s, it was not until 1975 
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that the first experimental procedure to sequence a DNA molecule was designed [Sanger and 

Coulson (1975)]. This invention marked the beginning of a new era in molecular biology 

research. Rapid advancement in high-throughput cost-effective sequencing technologies led to 

tremendous growth in sequence repositories. With it arose a need for developing computational 

methods and automated tools for analyzing these sequence databases. 

For more than two decades now, biological sequence analysis has been in forefront of molec

ular biology research, providing vital headways into the fundamental understanding of cellular 

mechanisms and significantly accelerating the process of molecular level discovery in modern 

biology. Within a span of only two decades, numerous genomes from a wide range of organisms 

from viruses to microbes to more complex mammalian species including the human have been 

sequenced and deciphered. Genes in the genomes of various species are being discovered and 

cataloged in databases along with corresponding functional and structural annotation; in many 

cases such projects are undertaken much earlier to the sequencing of the underlying genomes. 

Understanding the structural and functional roles of several other genomic entities such as 

regulatory elements and repeats is also of current interest. 

The key to the recent accomplishments in molecular biology research is the interdisciplinary 

alliance that is prevailing between biologists and computer scientists. Biologists generate ex

perimental data and pose questions of interest. Computer scientists design algorithms and 

software suites for efficiently processing these data and producing biologically meaningful re

sults. The outcomes from such concerted efforts have impacted the research conducted in both 

communities. The hardness of many of the biological problems have opened new venues for 

computer scientists to collaborate and participate, while the outcome of their efforts have recip

rocated to the biologists in the form of automated suites and tools for biologists, accelerating 

biological discovery. 

In this dissertation, we focus on problems in genomics that involve sequence analysis, 

especially those for which there is a compelling need for high performance computing solutions 

capable of analyzing large-scale data. Designing computational solutions for analyzing sequence 

databases is challenging because of various factors: 
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• Large-scale data: High-throughput sequencing has facilitated quick generation of bi

ological sequences, leading to an exponential growth in many publicly available sequence 

databanks. Handling large-scale data imposes heavy memory and run-time requirements. 

• Sequence variations: Sequences generated through experiments may contain errors. 

For example, a nucleotide may either be mis-read or missed. During analysis, it is essen

tial for ensuring quality to have a capability that can both identify such sequencing errors 

and differentiate them from sequence variations induced by natural mutation events. 

• Experimental costs: The costs associated with sequencing experiments have signifi

cantly reduced with the advancements in the underlying technologies. For instance, the 

cost of sequencing a DNA molecule reduced from over $10 per finished base in the early 

1990s, to less than 10<: per base in the early 2000s, and recently to under a tenth of a 

cent per base in 2005. It is still, however, substantially expensive to carry out genome 

scale sequencing projects [Pennisi (2005)]. Given that most experimental effort is spent 

in generating data that can provide information that is sufficient to their subsequent 

computational analysis, it is important that computational methods are designed with 

a goal of extracting as much information as possible from as little experimental data. 

Moreover, if computational methods can provide an insight into the information content 

of the data, such insights can serve as feedback to help biologists reduce experimental 

costs without compromising on quality. 

• Computational requirements: Many problems that involve sequence analysis are 

computationally hard, necessitating polynomial time approximation algorithms. Even 

such solutions, however, often require large run-time and memory requirements for large-

scale input sizes. 

Traditionally, most of the algorithms and software programs developed for analyzing se

quence databases have been design-intended for serial computers. The complexities of problem 

instances aggravated by the factors mentioned above, however, have made it increasingly diffi

cult for a continued deployment of such methods. Quick-fix solutions that run a serial code on 
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a high-end computer with tens of gigabytes of shared memory have been developed to alleviate 

this situation. Concurrent with these developments in computational genomics research, the 

supercomputing technologies have also experienced a phenomenal growth. Processing capabil

ities that can support thousands to tens of thousands of CPUs, with access to thousands of 

gigabytes of memory are now available in the form of distributed memory machines. Given the 

high complexities involved in analyzing large-scale sequence databases, these large-scale super

computers can provide an excellent platform for carrying out research. The key challenge is 

therefore on the algorithm designers to design methods that can efficiently exploit the memory 

and compute power to produce high quality biologically meaningful results. 

The contributions in this dissertation are as follows: 

» Scalable clustering framework: We focus on problems for making sequence level 

discovery of genomic and genie data. In particular, we address two important problems: 

Expressed Sequence Tag (EST) clustering and genome assembly. The problems can be 

directly applied to various genome level and gene related studies such as gene discovery, 

gene structural and functional annotation, alternative splicing studies, and gene expres

sion profiling. 

We formulate the compute intensive phases of these problems as a sequence clustering 

problem that involves computation of pairwise sequence overlaps. We then provide a 

space and time efficient parallel algorithm for distributed memory parallel computers 

[Kalyanaraman et al. (2003a,b, 2006b)]. We demonstrate the utility of our algorithm by 

clustering large EST collections and applying our clustering framework in the on-going 

efforts to assemble the maize genome. This research has enabled the clustering of millions 

of genomic and EST sequences in matters of hours without compromising on quality. It 

is also the first method that has demonstrated a linear scaling to over thousands of 

processors. Our clustering framework provides a generic and efficient solution to any 

sequence analysis problem that can in principle, be solved by computing the overlap 

between each sequence in the input to every other sequence. 

• LTR retrotransposon identification: 
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Long Terminal Repeat (LTR) retrotransposons constitute one of the most abundant 

classes of repetitive elements in several eukaryotic genomes. Detection of these repeti

tive elements require methods that can analyze genome-scale data. We developed a new 

algorithm for detecting genomic regions that contain the structural characteristics of a 

full-length LTR retrotransposons [Kalyanaraman and Aluru (2005b, 2006)]. The factors 

that distinguish our algorithm from other contemporary approaches are as follows: (i) 

a novel method to preprocess the entire genome sequence in linear time and produce 

higher quality "candidates" in constant time per candidate, (ii) a thorough evaluation 

of each candidate in order to ensure a high quality prediction, (iii) a robust parameter 

set encompassing both structural constraints and quality controls provided by the users 

with a high degree of flexibility, and (iv) serial and parallel software programs implement

ing our algorithm. Our validations conducted on the yeast genome show both superior 

quality and run-time when compared to other software. Performance studies on many 

large genomes such as that of Arabidopsis («119 million bp), Drosophila («118 million 

bp), and Chimpanzee («3 billion bp) also show multi-fold speedups over contemporary 

software. 

• Scaffolding using LTR retrotransposons: 

The presence of repeats in genomes has been traditionally viewed as a source of compli

cation while assembling genomes. We introduce a problem called retroscaffolding [Kalya

naraman et al. (2006a)] that, on the contrary, can benefit from the abundance of LTR 

retrotransposons. Retroscaffolding is a new variant of the well-known problem of scaf

folding, which is aimed at determining the order of the sequences output by a genome 

assembly program along a target genome. Scaffolding is the last computational step, af

ter which the genome sequence is "finished" through experimental means. The retroscaf

folding approach is not meant to supplant but rather to complement other scaffolding 

approaches. There are two more advantages in retroscaffolding: (i) it allows detection of 

regions containing LTR retrotransposons within the unfinished portions of a genome and 

can therefore guide the process of finishing, and (ii) it provides a mechanism to lower se-
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quencing costs without impacting the quality of the assembled portions containing genes. 

Sequencing and finishing costs dominate the expenditures in whole genome projects, and 

it is often desired in the interest of saving cost to reduce such efforts spent on repeat 

regions of a genome. The retroscaffolding technique provides a viable mechanism to this 

effect. 

The dissertation is organized as follows. Chapter 2 provides a brief overview on the biolog

ical concepts and terminology required to understand the problems and applications described 

in this dissertation. We also outline popular sequence overlap computation methods. In Chap

ter 3, we formulate the problems of EST clustering and genome assembly as problems involving 

sequence clustering. We then provide an extensive review of literature describing the various 

computational methods previously developed for these two problems. In Chapter 4, we describe 

our parallel clustering algorithm, and report the results we achieved in two main applications: 

clustering various large-scale EST data collections including 3.7 million mouse ESTs, and clus

tering 1.6 million maize genomic fragments as part of the on-going maize genome sequencing 

initiative. The platform used for our experiments is a 1,024 node IBM BlueGene/L super

computer at Iowa State University. In Chapter 5, we describe the algorithms and software we 

developed for de novo identification of LTR retrotransposons. In Chapter 6, we introduce the 

retroscaffolding problem, describe our algorithm, and demonstrate its utility on maize genomic 

data. Chapter 7 concludes the dissertation with a discussion on future research directions. 
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CHAPTER 2. SEQUENCE ANALYSIS: BIOLOGICAL BACKGROUND 

AND TERMINOLOGY 

The genome of an organism is the collection of all DNA molecules in a cell of a living 

organism. Genes are portions within a genome that encode for proteins and RNA molecules 

that axe responsible for various functions in cellular development. Genes could be part of either 

strand of the genomic DNA. An eukaryotic gene can be viewed as a sequence of alternative 

segments called exons and introns. The biological mechanism that leads to the production of 

proteins in an eukaryotic genome is illustrated in Figure 2.1, and can be described as follows. 

In the first stage called transcription, a copy of the gene is made into a preliminary RNA 

molecule called the pre-mRNA. Once this single stranded pre-mRNA is released into the nu

cleus, a splicing mechanism splices the exons by removing the intervening introns and creates 

a corresponding RNA molecule called the messenger RNA or (mRNA). The combination of 

exons selected during transcription need not be unique: different transcription events of the 

same gene could use different combinations of exons (and sometime even introns). This phe

nomenon, called alternative splicing, provides the capability for a gene to code for more than 

one mRNA molecule (and thereby multiple protein products). Once transcribed, the mRNA 

molecule, also called an mRNA transcrpt, is released into the cytoplasm of the cell. The overall 

process of a gene transcribing for an mRNA molecule is also referred to as gene expression. 

The number of mRNAs transcribed from a gene indicates its expression level under a set of 

provided conditions. 

In the next stage, called translation, the mRNA molecule binds itself to a molecular com

plex, and the sequence is translated into a corresponding protein molecule; the translation 

reads the mRNA sequence in blocks of three nucleotides, where each three-letter sequence 
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Figure 2.1 Illustration of transcription and translation — the biological 
mechanisms that produce protein molecules from the genetic 
code encoded in genes. 

called a codon translates into one of 20 amino acids. The mapping from codons to amino 

acids is referred to as the genetic code, which is almost universal across organisms. It is now 

known that not all genes transcribe for protein-coding mRNAs. Such genes are labelled pseu-

dogenes because of a lack of protein product. Nevertheless, it is also sometimes possible that 

a protein-coding mRNA is not successfully translated into its corresponding protein product. 

2.1 Genomic Repeats 

Identical or approximately identical copies of a subsequence could be present in multiple 

locations of a genome. These subsequences are called repeats. There are numerous types of 

repeats, and one of the most abundant type of repeats are the transposons. 
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2.1.1 Transposons 

Transposition is a process by which a sequence of DNA can move to or copy itself at 

different positions within the genome. The DNA sequences that transpose themselves are 

called transposons. Based on the mechanism of transposition, there are two main types of 

DNA transposons. The first class of transposons are those that can cut themselves from 

their current genomic location and then insert themselves into another. These are simply 

referred to as DNA transposons. The second class of transposons make a copy of themselves 

into an intermediate RNA molecule, which is then reverse transcribed and inserted as a DNA 

molecule into another genomic location. Because this transposition mechanism is similar to 

that in retroviruses, these transposons are called retrotransposons. There are several subclasses 

of retrotransposons. 

• LTR Retrotransposons: These retrotransposons are characterized by two long ter

minal repeats, and are therefore called Long Terminal Repeat (or LTR) retrotransposons. 

• Non-LTR Retrotransposons: These include different subclasses of retrotransposons 

such as long interspersed elements (LINEs), short interspersed elements (SINEs), and 

Alu sequences. 

2.2 Sequencing Technologies 

Sequencing is the process of determining the chain of nucleotides in a DNA or RNA 

molecule, or the chain of amino acids in a protein molecule. In 1975, Sanger and Coulson 

[Sanger and Coulson (1975)] designed the first method to sequence DNA molecules and called 

it a "plus and minus" method. Two years later, Sanger et al. designed another method called 

the chain termination method [Sanger et al. (1977)] similar to the plus and minus method. 

Currently, almost all sequencing methods are based on the chain termination method. Since 

its invention, significant technological advancements have been made towards increasing the 

throughput and accuracy, and towards reducing the cost per base of sequencing. 
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With current methods for DNA sequencing, it is possible to sequence «500-1000 bp nu

cleotides at a stretch with an accuracy of 98-99%, implying a maximum sequencing error rate 

of 1-2%. However in reality, biological molecules are much longer — genomes span a few 

tens of thousands to even billions of nucleotides; a gene may span thousands to a few tens 

of thousands of nucleotides; and a protein can span hundreds of amino acids. To extend the 

reach of sequencing a target molecule's full length, technologies adopt the following strategy of 

sequencing randomly chosen "fragments" from many copies of the molecule, and subsequently 

relying on computational means to group or assemble the target molecule. 

In this section, we will briefly review the different sequencing technologies and the types of 

sequences that can be generated from them. 

2.2.1 Expressed Sequence Tag Sequencing 

Expressed Sequence Tags (ESTs) are sequences obtained from mRNA libraries. ESTs are 

sequenced as follows (illustrated in Figure 2.2): Depending on the conditions a living tissue is 

subjected, different genes in the tissue could express at different levels. The mRNA molecules 

transcribed during an experiment are extracted and isolated [Chomczynski and Sacchi (1987)]. 

Subsequently, the isolated mRNA molecules are subjected to reaction with an enzyme called 

reverse transcriptase. This converts the mRNA to its double stranded DNA counterpart (i.e., 

with an added complementary strand and with U replaced by T) called the complementary 

DNA (or cDNA) molecule. Due to underlying experimental limitations, however, this proce

dure may not complete on the entire mRNA thereby resulting in partial length cDNAs. In 

order to provide sufficient coverage over the entire mRNA, multiple and possibly redundant 

such partial length cDNAs can be generated and each cloned using a cloning vector. Using 

primers targeted for known vector sequences near the ends of the inserts, the nucleotide se

quence of each inserted clone can then be read over a single pass from either end, resulting in 

fragments called ESTs that are about 500 bp long. Because this procedure may oversample the 

end regions of a cDNA clone, the untranslated regions at the ends of the corresponding mRNA 

may also get proportionately over-represented. If it is desirable to avoid such bias, sequencing 
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Figure 2.2 Illustration of the EST sequencing procedure. 

is started from random locations on the cDNA insert using randomly created sequences as 

primers, or through application of restriction enzymes, breaking the cDNA insert before its 

shreds are sequenced from their ends. 

Cost-effective high throughput sequencing of ESTs has largely been facilitated by the sim

plicity of the single pass sequencing technology. Nevertheless, the technology does not always 

generate accurate sequences. Nucleotides are sometimes misread or ambiguously interpreted 

resulting in low-quality sequences. It is also possible, although rare, that two cDNA sequences 

representing two distinct mRNA sequences are spliced together resulting in an artifact known 

as a chimeric cDNA. When cloned and sequenced, the resulting ESTs could contain portions 

from either cDNA, potentially confounding their subsequent analysis. 

During sequencing, the two ESTs that originate from the ends of a cDNA insert are some

times tagged with the clone identifier and stored in the header of the EST sequences in the 

database. This auxiliary information proves valuable in later stages of the sequence analysis — 
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pairs of ESTs having the same clone identifier are labeled clone mate pairs (or clone pairs) and 

are immediately associated with a common source transcript, obviating the need to compute 

additional evidence to establish their relationship. Mate pair information is not unique to EST 

sequencing; it is also common in genome sequencing techniques that involve sequencing from a 

clone insert. Also available sometimes with EST sequence data are "trace data" that contain 

the quality values for each base position of the ESTs. Such trace data are measures of sequence 

quality and are valuable during analysis. 

Genes express differentially depending on the tissue they reside and the subjected experi

mental conditions. Consequently, EST data generated by conventional sequencing techniques 

have ESTs from overly expressed genes in a proportionately higher concentration than from 

sparsely expressed genes. Such non-uniformity may be desirable if the ESTs are used in gene 

expression related studies; otherwise, not only is the effort spent in sequencing multiple ESTs 

covering the same regions unnecessary, but such non-uniformity may also add significant chal

lenges to the computational methods for EST analysis. For example, one unique EST per 

gene is sufficient for estimating the number of genes in an organism, while oversampling may 

significantly increase the computation as a function of the number of ESTs represented per 

gene. To alleviate this problem, many variations to the original sequencing technique have 

been invented and these methods can be classified into two groups: normalization and sub-

tractive hybridization. Normalization achieves a balance in the cDNA population within a 

cDNA library [Patanjali et al. (1991); Scares et al. (1994)], while subtractive hybridization 

reduces overly represented cDNA population by selectively removing sequences shared across 

cDNA libraries [Duguid and Dinauer (1990); Fargnoli et al. (1990); Schmid and Girou (1987); 

Schweinfest et al. (1990); Travis and Sutcliffe (1988)]. For a survey of these two methods see 

[Baldo et al. (1996)]. 
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2.2.2 Whole Genome Sequencing 

2.2.2.1 Whole Genome Shotgun Sequencing 

One of the most popular ways to sequence an entire genome is whole genome shotgun 

(WGS) sequencing, first used to sequence the genome of bacteriophage A [Sanger et al. (1982)]. 

In this method, random locations of a target genome are sampled by a shotgun approach, and 

short sequences («5,000 bp) starting at these locations are extracted. The short sequences are 

then cloned in bacterial vector colonies, and are sequenced from both sides from each vector. 

The resulting sequences are of length «500-1,000 bp and are called shotgun fragments. 

In WGS sequencing, a target genome can be sampled such that each of its base can be 

expected to be covered by a specified number of fragments. This number is called sequencing 

coverage and is denoted by 'X'. The number of fragments sequenced in a WGS project is a 

function of the length of the target genome and the desired sequencing coverage. For example, 

a 6X coverage of a 3 billion bp genome will result in approximately 36 million fragments, 

assuming an average length of 500 bp for each fragment. Given the randomness of the shotgun 

procedure, however, it cannot be guaranteed that each base will be covered by at least one 

fragment. In practice, significantly long stretches of genome are left uncovered in sequencing, 

and each of these stretches is called a sequencing gap. Specifying a high coverage decreases the 

frequency and lengths of such gaps, although at a proportionately higher sequencing cost. 

In general, whole genome shotgun sequencing is relatively cheaper when compared to other 

sequencing technologies because the locations to sequence are chosen at random. The approach 

has been used for sequencing a number of genomes including the human genome [Adams et al. 

(2000); Venter et al. (2001a,b, 2004)]. 

2.2.2.2 Hierarchical Sequencing 

An alternative methodology to whole genome shotgun sequencing is hierarchical sequenc

ing. In this approach, a .genome is first broken into numerous smaller clones of size up to 200 

kbp each called a Bacterial Artificial Chromosome (or BAC). Next, a combination of these 

BACs that provide a minimum tiling path based on their locations along the genome is deter
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mined. Each selected BAC is then individually sequenced using a shotgun approach generating 

numerous short («500-1,000 bp long) shotgun fragments. This method is also called BAC-by-

BAC sequencing or clone-by-clone sequencing because of its hierarchical strategy. Even though 

the associated costs of creating BAC colonies makes this a costlier alternative to whole genome 

shotgun sequencing, this method provides additional information that facilitate an accurate 

analysis of the fragments. Hierarchical methods similar to BAC-by-BAC sequencing involve 

different types of colonies such as Yeast Artificial Chromosomes and Fosmids. The BAC-by-

BAC approach has been used for sequencing several complex eukaryotic genomes including 

that of the human [Consortium (2001)] and maize [NSF (2005)]. 

2.2.2.3 Gene-enriched Sequencing 

A majority of the genomic DNA content in eukaryotic genomes are repetitive regions and 

only a very small portion typically contain genes, e.g., the maize genome is estimated to 

contain less than 20% of it in genes. To selectively sample genie portions of the genome dur

ing sequencing, biologists have developed two gene-enrichment sequencing strategies for plant 

genomes: Methyl Filtration (MF) [Rabinowicz et al. (1999)] and High-Cot (HC) sequencing 

[Yuan et al. (2003)]. MF sequencing discards genomic portions that are highly methylated, 

which are a typical characteristic of repetitive regions. The HC technique isolates low-copy (or 

genie) regions of a genome based on hybridization kinetics. These two techniques have been 

used to sequence the gene-riched portions of the maize genome [Palmer et al. (2003); Yuan 

et al. (2003)], 

2.2.3 454 Sequencing 

The 454 sequencing is a recently developed sequencing technique [Margulies et al. (2005)] 

that uses microfabricated high-density picolitre reactors. While this technique is still at the 

early stages of its development, it has attracted the attention of several researchers in genome 

sequencing projects primarily because of its superior throughput. However, the average length 

of fragments that can be sequenced with current technology is relatively short — only «100 
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bp. 

2.3 Pairwise Sequence Alignment Computation 

For computational purposes, all biological sequences can be represented as strings over a 

finite alphabet — for DNA and RNA sequences the alphabet is 4 characters, and for proteins 

it is 20 characters. This property has been taken advantage of in various sequence analysis 

problems. The relationship between two sequences is typically established by comparing the 

two sequences, and detecting any potential "overlap" between them. Because the sequences 

typically represent much smaller pieces of the original source sequence, the presence of overlap 

can be used as an evidence to link two sequences without prior knowledge of the underlying 

source sequence. For the remainder of the dissertation, we use the terms "sequence" and 

"string" interchangeably. Also, we use the term "subsequence" to mean a substring throughout 

the remainder of this dissertation except in this section. 

The problem of detecting an overlap between two sequences can be formulated as the 

problem of computing an "optimal" pairwise sequence alignment. An alignment between two 

strings is an ordered list of matches, mismatches, insertions, and deletions between the two 

strings. A contiguous stretch in an alignment containing more than one deletion (alternatively, 

insertion) is referred to as a "gap". A "score" of an alignment is computed from the number of 

its matches, mismatches and gaps. An "optimal alignment" is one with the maximum score. 

Modeling biological pairwise sequence overlaps as sequence alignments provides an effective 

mechanism to account for sequencing errors and sequence level disagreements arising due to 

mutation events. 

There are several types of alignments that can be computed between two strings based on 

the portions of the two strings considered for alignment scoring. Given two strings, si and %, 

of lengths m > 0 and n > 0 respectively: 

• Global Alignment: align the whole of si against the whole of [Needleman and 

Wunsch (1970)]. this alignment formulation is suited for comparing two highly similar 

strings; 
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• Local Alignment: align an arbitrary substring of si against an arbitrary substring of 

52 [Smith and Waterman (1981)]; this is suited for detecting local similarities between 

two strings; 

• Semi-global Alignment: align an arbitrary suffix of si (alternatively, s2) against an 

arbitrary prefix of (alternatively, si). Note that the global alignment is a special case 

of this alignment if the suffix and prefix are the entire strings. This alignment is also 

sometimes called the suffix-prefix or end gaps free alignment by virtue of the fact that 

the gaps at either end of an alignment is not penalized (i.e., given a score of 0). The 

semi-global alignment is a popular choice in fragment assemblers for detecting pairwise 

overlapping fragments; 

• Spliced Alignment: align the whole of si (alternatively, S2) against an arbitrary 

subsequence of (alternatively, si) [Gelfand et al. (1996); Schlueter et al. (2003); Usuka 

et al. (2000)]. This formulation is suited for aligning an EST/cDNA sequence with 

genes/genomic regions. The outcome of a spliced alignment can be used to both locate 

expressed portions within genes and annotate them with their corresponding expressed 

products; 

• Syntenic Alignment: align an arbitrary pair of subsequences from either strings 

[Delcher et al. (1999); Huang and Chao (2003); Rajko and Aluru (2004)]. This alignment 

formulation is appropriate for comparing genomes of two evolutionarily related organisms. 

A significant syntenic alignment is a chain of local similarities (representing conserved 

genie regions) interspersed by long gaps (representing the long stretches of divergent junk 

regions between genes). 

Using dynamic programming, computing an optimal global, local, semi-global, spliced and 

syntenic alignments take 0(m x n) time, and 0(m + n) space [Hirschberg (1975)]. Alignments 

are typically computed using a (m+1) x (n+1) table. Computing a global alignment between a 

pair of strings of similar lengths and expected high sequence similarity can be accelerated using 

a banded computation technique [Fickett (1984)]. In this technique, the alignment computation 
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starts on the diagonal of the dynamic programming table and progressively expands either side 

in a band until it can be guaranteed that no optimal alignment can lie outside the band. The 

main idea is to avoid computing the entire table, although it may be necessitated in the worst 

case. This banded technique can also be extended for non-global alignments if individual pairs 

of local regions that are potentially aligning can be identified through other quicker means. 

For the above alignments, alignment scoring could vary depending on the mechanism used 

to penalize gaps. A straightforward mechanism is to penalize gaps proportional to their lengths. 

Another popular gap function is called the affine gap penalty function [Gotoh (1982)], in which 

gaps exceeding a cutoff length are given a constant penalty. Affine gap penalty functions are 

generally preferred because they provide a better model for biological events such as mutations 

and polymorphisms. 

Besides alignment scoring, there are several other ways to measure pairwise sequence simi

larity [Burke et al. (1999); Ukkonen (1992)]. While computing these measures may not model 

the problem accurately for sequence errors and expected patterns in overlaps, these techniques 

are usually sought as faster alternatives to alignment based methods. For a survey of alignment 

and other sequence similarity measures and methods see [Jackson and Aluru (2005); Gusfield 

(1997a); Setubal and Meidanis (1997)]. 
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CHAPTER 3. SEQUENCE CLUSTERING: PROBLEMS AND 

APPLICATIONS 

Broadly, there are three main goals (in that order) in genomics research: (i) discover 

the composition and structure of all naturally occurring biological DNA, RNA and protein 

molecules, (ii) understand their behavior under different conditions both as an independent 

molecular entity and as part of a biomolecular complex system, and (hi) advance the state 

of genetic capabilities in medical and agricultural research towards the betterment of an or

ganism's health and/or productivity. This chapter and the next focus on methods towards 

achieving the first goal, which is to be able to determine the composition of molecules. To this 

effect, sequence databases are as an immense source of information. 

Given the large sizes of sequence databases and the vast diversity in the sources they repre

sent, a necessary first step in their computational analysis is to identify the several sources they 

represent and organize them into several conceptual groups. For example, given a collection 

of ESTs sequenced from an organism, identifying the different genes represented among them 

provides a finer level insight into the genetic composition of the organism. It is customary to 

formulate this group identification task as a sequence clustering problem, with the criteria for 

clustering designed to model at best desired biological criteria. 

In what follows, we will focus on two problems in clustering DNA sequence databases, and 

present their significance through their biologically motivated applications. 
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3.1 Clustering DNA Sequences 

3.1.1 Clustering of Expressed Sequence Tags 

ESTs represent sequences sampled from expressed portions of genes. Given a collection of 

ESTs collected from an experiment, we can ask the following questions: 

• Q1 What genes are expressed in the experiment? 

• Q2 What are the mRNA transcripts that correspond to the expressed genes? 

• Q3 Were any of the genes alternatively spliced during the experiment or relative to their 

expression in other experiments? 

• Q4 What are the expression levels of genes that are expressed in the experiment? 

These are some of the important questions that can be answered by analyzing EST databases, 

even without any apriori knowledge on the genes in the underlying organisms including their 

count or composition. In other words, analyzing ESTs provide valuable insights into expressed 

genes regardless of the availability of the sequence of the underlying genome. EST sequencing 

also provides an alternative mechanism to sample gene-rich portions of the genome. 

3.1.1.1 Problem Statement 

Given an arbitrary collection of ESTs, partition the ESTs into "clusters" such that each 

output cluster corresponds to a unique gene (alternatively, mRNA transcript). 

3.1.1.2 Applications 

• Transcriptome and Gene Discovery: One of the earliest identified merits of EST 

data is in discovering genes with expression evidence [Adams et al. (1991); Boguski et al. 

(1994)]. A sequencing experiment can trigger the expression of multiple genes in a target 

cell/tissue, and so the resulting EST data is a segmented representation of the transcribed 

portions of all these expressed genes. Thus, clustering an EST collection is equivalent to 

reverse-engineering the process that sequenced the ESTs in the first place, and the set 
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of clusters would correspond to the portion of the transcriptome (or expressed portions 

of the genome) represented in the underlying sequence data. However, such EST-to-

source mapping is not readily available and one of the main challenges in clustering is its 

inference from other information contained within the sequence data. 

Any two ESTs that cover a common segment within their gene source are expected to 

show a significant sequence overlap in the corresponding region(s). Therefore, detection of 

pairwise overlaps among the EST data can serve as a basis to cluster ESTs. Furthermore, 

if it is possible to assemble the ESTs in each cluster consistent to the pairwise assembly, 

then the resulting supersequence is likely to correspond to the mRNA transcript that 

gave rise to the set of ESTs in that cluster. The UniGene project undertaken by NCBI 

is a typical example of clustering ESTs by gene source [Pontius et al. (2003)]; and the 

Gene Index project undertaken by The Institute of Genome Research (TIGR) clusters 

by transcript source [Quackenbush et al. (2000)]. 

Given the high costs associated with whole genome projects, the genomes of many or

ganisms of interest are unlikely to be sequenced. In many cases, biologists still depend 

on EST data to help them with building transcriptomes and gene lists. Numerous tran

scriptome projects have benefited from EST databases in the past [Boguski and Schuler 

(1995); Camargo et al. (2001); Carninci et al. (2003); Caron et al. (2001); Okazaki et al. 

(2002)]. EST based gene discovery and transcriptome construction projects, however, 

are not guaranteed to cover the gene space entirely — i.e., genes that are not transcribed 

during sequencing will be missed subsequently by an EST based discovery process. For 

example, in Berkeley Drosophila Genome Project, only about 70% of the genes were 

covered by the cDNA/EST based gene discovery [Stapleton et al. (2002)]. 

• Gene Annotation and Alternative Splicing: Once clustered, ESTs within a cluster 

can be used to annotate their putative source gene's structure through spliced alignment 

techniques [Gelfand et al. (1996); Schlueter et. al. (2003); Usuka et al. (2000)]. Exonic and 

intronic boundaries within expressed genes can be marked using the alignment pattern 

of a gene sequence with an EST derived from it. EST based gene annotation has been a 
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vibrant research area [Bailey et al. (1998); Bono et al. (2002); Huang et al. (1997); Jiang 

and Jacob (1998); Okazaki et al. (2002); Seki et al. (2002); Whitfield et al. (2002); Zhu 

et al. (2003)]. 

As ESTs are derived from mRNAs, they also provide a means to discover alternative 

splicing events of the underlying genes [Burke et al. (1998); Kan et al. (2001); Mironov 

et al. (1999); Modrek and Lee (2002); Modrek et al. (2001)]. 

• Alternative Poly-adenylation: Poly-adenylation occurs during transcription and 

is the process by which an mRNA sequence is terminated at its 3' end. At the termi

nated end, the transcription process appends a repeat sequence of the nucleotide adenine 

(termed as a "polyA tail"), which plays important roles in the mRNA's stability and 

translation initiation. Alternate choice of polyadenylation sites results in corresponding 

variations at the mRNA ends and is considered an important post-transcriptional regula

tory mechanism. ESTs sequenced from the 3' ends of the mRNAs are used to determine 

alternate polyadenylation sites in genes [Gautheret et al. (1998)]. ESTs are first clus

tered and assembled into sequences representing the underlying mRNA transcript. While 

assembling, polyA discrepancies are detected in positions having additional evidence of 

conserved motifs for polyadenylation sites such as the hexamer A AU AAA, which are 

then recorded as possible sites of alternate polyadenylation. 

• Gene Expression Studies: Before the advent of the microarray technology, gene 

expression and co-regulation related studies were primarily dependent on EST data. 

During a sequencing experiment, the number of ESTs derived from an expressed gene is 

correlated to its expression level under the experimental conditions. In 1995, a technique 

called Serial Analysis of Gene Expression (SAGE) was developed based on the above phi

losophy [Velculescu et al. (1995)]. For examples of EST based gene expression studies, 

see [Ewing et al. (1999); Mao et al. (1998)]. For a review on different approaches to dif

ferential gene expression studies including EST based analysis, see [Carulli et al. (1999)]. 

In addition to expression profiling, ESTs are also used to design oligos for microarray 
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chips [Kapros et al. (1994); Zhu and Wang (2000)]. 

• Single Nucleotide Polymorphisms: Single Nucleotide Polymorphisms (SNPs) are 

the most abundant class of genetic variation occurring almost every 1,200 bp along the 

human genome. SNPs are studied for mapping complex genetic traits. SNPs that occur 

on coding and regulatory sequences could alter the expression pattern or even the tran

scriptional behavior of the gene. SNPs have also been identified as causes for various 

diseases [Collins et al. (1997)]. Such SNPs can be identified as nucleotide variations in 

assembled ESTs [Garg et al. (1999); Marth et al. (1999); Picoult-Newberg et al. (1999); 

Ye and Parry (2002)]. However, these variations need to be distinguished from those 

variations seen among ESTs from paralogous genes, or occurring in ESTs due to se

quencing errors; otherwise the SNP identification process may result in false predictions. 

This is usually accomplished by observing a probabilistic distribution that also takes into 

account the quality values of nucleotides in question. A large database of all identified 

SNPs is maintained by the NCBI (http://www.ncbi.nlm.nih.gov/projects/SNP/) and is 

called dbSNP [Sherry et al. (2001)]. Although a majority of the SNPs in this database are 

that of human and mouse, the database is open to SNPs from any species and occurring 

anywhere within its genome. 

3.1.1.3 Computational Challenges 

Overlap Detection 

The primary source of information to achieve clustering is the detection of pairwise overlaps 

between ESTs. Pairwise overlaps can be detected by computing alignments and the choice of 

an appropriate overlap detection scheme is dictated by the goal of clustering. If the goal is 

to cluster ESTs based on mRNA source, then a semi-global alignment computation is suited 

because it detects suffix-prefix overlap expected out of two ESTs derived from an overlapping 

region on the mRNA transcript. However, if clustering by gene source is desired, then in 

addition to a suffix-prefix type of alignment there is a need to detect overlaps between ESTs 

derived from different alternatively spliced transcripts of the same gene. This can be mod

http://www.ncbi.nlm.nih.gov/projects/SNP/
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eled as finding a consistent chain of local alignments (better known as a syntenic alignment) 

corresponding to the regions containing shared exons. 

A naive approach to clustering is to first choose the overlap detection scheme, run it on 

each pair of input sequences, and in the process form the clusters using only those pairs with 

a significant overlap. The main issue with this approach is that its scalability is limited by 

the quadratic increase in the number of pairs. This can be further aggravated by the high 

computation cost associated with detecting each overlap — the run-time for aligning two 

sequences through a standard dynamic programming approach is proportional to the product 

of their lengths. 

Thus, a primary challenge in designing clustering algorithms is to be able to significantly 

reduce the run-time spent in detecting overlaps, and still obtain correct clustering that would 

have resulted had all pairs been considered. There are two independent ways of achieving 

this reduction: (i) reduce the cost of each pair computation by opting for a less rigorous 

and/or approximate method instead of aligning two sequences, and (ii) device faster methods 

to detect sequence pairs in advance that exhibit significant promise for a good alignment and 

then perform rigorous alignment only on those selected "promising pairs". 

The inherent nature of sampling in EST data can add significantly to the computational 

complexity of the clustering process. Even if one were to devise a scheme that intelligently 

discards all non-overlapping pairs from overlap computation, the number of genuinely overlap

ping ESTs may still be overwhelming in practice. This is because the sequencing procedure 

may oversample the ends of the mRNA transcripts (giving them a deep coverage) while under-

sampling their mid-regions. The result is what we see in Figure 3.1, i.e., a vertical tiling of 

ESTs on a source mRNA transcript. Thus the number of genuinely overlapping pairs could 

grow at a quadratic rate as a function of the number of ESTs covering each transcript, which 

could be very high for transcripts arising from over-expressed genes. This raises a critical issue 

when dealing with large inputs containing hundreds of thousands to millions of ESTs, espe

cially limiting the applicability of those software packages designed to handle only uniformly 

sampled sets (e.g., fragment assemblers). 



www.manaraa.com

24 

cDNA 

5' ESTs : 3' ESTs 

Figure 3.1 Non-uniform sampling of mRNA resulting from the EST se
quencing procedure. 

Sequencing Errors and Artifacts 

With current technology, even though the error rates are as low as 1-2%, it is important for 

a clustering algorithm to handle errors in order to guarantee a high prediction accuracy. Errors 

such as an incorrectly interpreted, included, or excluded nucleotide in a sequence are typically 

handled during overlap detection — by modeling such errors as mismatches, insertions and 

deletions in alignments. There are other types of errors and artifacts that can be detected at 

an earlier stage and most of these errors are detected in a preprocessing step prior to overlap 

detection: 

• During sequencing, ESTs may get contaminated with the vector sequences adjoining the 

cDNA clones. These sequences are easy to detect because they are part of the known 

vector DNA sequence and are expected to occur at ends of ESTs. During preprocessing, 

such sequences are detected and removed. 

• The sequencing procedure may also have ambiguously read some bases and may have 

marked such bases with low quality values. In the resulting ESTs, these bases are marked 

with special characters such as 'N' or 'X', so that they can be treated accordingly by a 

subsequent overlap detection scheme. 

• ESTs derived from 3' ends of an mRNA usually retain portions of the mRNA's polyA 

tail. The presence of such polyA tails in ESTs may be of interest only to alternative 

poly-adenylation related studies. In other studies, such regions are uninformative and if 

retained may only result in false overlaps. Thus as part of preprocessing, these polyA 
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tails are trimmed off the ends of the ESTs. 

* ESTs can also sometimes contain portions of chimeric cDNA clones. Accurately detecting 

such artifacts is typically hard in a preprocessing step, and the task is generally deferred 

to a later stage of overlap detection. If the genome of the underlying organism has 

already been sequenced, then chimeric ESTs can be detected as those that have different 

portions in them aligning (through a spliced alignment method) to different genomic 

locations. Their detection, however, becomes much harder in the absence of the genome 

sequence. A common method is to flag those ESTs that "bridge" two otherwise distinct 

non-overlapping sets of ESTs. The problem with this approach, however, is that there 

could also be ESTs that genuinely bridge two ends of an mRNA transcript, and therefore 

this scheme could result in false labeling of such ESTs with chimeric origins. The number 

of ESTs in the two otherwise distinct sets of ESTs being bridged, can also serve as an 

additional indicator on the the confidence level of a chimeric prediction. 

Natural Variations 

If a pair of sequences overlap significantly but with a few mismatches and/or indels in their 

underlying best alignment (s), then there are two ways to explain such disagreements: (i) the 

underlying sequencing procedure incorrectly read the bases on one of the sequences, or (ii) the 

two ESTs being compared are from alleles or paralogous genes that have these natural varia

tions because of mutations or single nucleotide polymorphisms. The choice between these two 

possibilities is made by looking at more than one overlapping pair at a time. For example, of 

the 10 overlapping sequences shown in Figure 3.2a, only one has a nucleotide that is different 

from the corresponding nucleotides in the other 9 sequences, indicating the high likelihood of a 

sequencing error that caused the variation in the singled out sequence. Figure 3.2b shows a dif

ferent case where such a disagreement is equally distributed among the 10 sequences indicating 

that it is likely the result of a natural variation i.e., that the sequences were extracted from two 

different gene paralogues or polymorphic genes. The underlying assumption is that the prob

ability of such a variation occurring at the same position evenly across multiple overlapping 

ESTs is too low to have likely occurred. 
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Figure 3.2 Overlap layout suggesting a case of a (a) sequencing error, and 
(b) natural variation. 

Large data sizes 

Since the initiation of cDNA sequencing projects in 1992 [Adams et al. (1991)], EST 

databases have tremendously grown in their sizes. The dbEST portion ([Boguski et al. (1993)], 

http://www.ncbi.nlm.nih.gov/dbEST/index.htmi!) of the NCBI GenBank is a public repository 

for storing ESTs and full-length cDNAs generated by numerous sequencing efforts. As of May 

2006, the dbEST database contains over 36.5 million ESTs, making it the largest public EST 

data repository. Also, the number of ESTs increased «29% from 2004 to 2005. About 740 

organisms are represented in this database, and human ESTs dominate the pool with about 7.7 

million sequences, followed by mouse ESTs with 4.7 million sequences. Among plants, Oryza 

sativa (rice) has over 1.1 million ESTs, followed by Triticum aestivum (wheat) with 854,397 

ESTs. Over 40 organisms have more than 100,000 ESTs. 

3.1.2 Clustering for Genome Assembly 

Once a genome is sequenced through one of the strategies discussed in Chapter 2, the set 

of sequenced fragments can be used to computationally "assemble" the genome. Despite rapid 

advances in hardware speeds and memory capacities over the last two decades, assembling tens 

of millions of fragments typical of large-scale genome projects places enormous computational 

demands. For example, one of the assembly efforts by Venter et al. of the «3 billion bp human 

genome took 20,000 CPU hours, a task that was brute-force parallelized to finish in 10 days 

http://www.ncbi.nlm.nih.gov/dbEST/index.htmi
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G 

Contigs G\ gap Gi_ 

F — 

Figure 3.3 Illustration of the context of clustering in whole genome se
quencing projects. Clustering F would partition it into two 
clusters, one corresponding to Gi, and another to (So

using ten 4-processor SMP clusters each with 4 GB RAM, along side a 16-processor NUMA 

machine with 64 shared memory machine [Venter et al. (2001b)]. A majority of the compu

tational effort in assembling genomes is spent in detecting pairwise overlaps. For example, in 

the above mentioned human genome project, 10,000 CPU hours were spent only on computing 

pairwise alignments for detecting overlapping pairs of fragments. In this aspect, the problem 

of genome assembly is similar computationally to the problem of EST clustering described 

earlier in this section — both involve a compute-intensive overlap detection phase. However, 

clustering is typically an "easier" task, in that it is sufficient to form clusters based on detected 

overlaps, whereas, in genome assembly additional computation is required to reconstruct the 

supersequence(s) from the clustered sequences. 

Due to this commonality in the nature of computation involved between genome assembly 

and sequence clustering, several genome assemblers follow a two-phase approach to genome 

assembly [Emrich et al. (2004); Havlak et al. (2004); Mullikin and Ning (2003)]: (i) first, 

"cluster" the genomic fragments based on pairwise overlap information, and (ii) assemble each 

of the clusters individually using traditional fragment assembly programs. The meaning of 

clustering in this context is, however, different from what we described for EST clustering 

(refer to the example in Figure 3.3): For example, let us assume a genome G, and a set of 

fragments F sequenced from it as shown in Figure 3.3 by one of the sequencing strategies 

explained in Chapter 2. Clustering F based on overlap information is expected to produce two 

clusters, one each for the sequence-sampled genomic stretches G\ and This is because of 

lack of overlap information to span the sequencing gap between G\ and 0%. 
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The advantage of clustering fragments prior to performing fragment assembly is that it 

breaks the initial problem into numerous subproblems (each corresponding to one output clus

ter), so that each of the subproblems can be individually tackled using a fragment assembler. In 

the above example, an assembly of the two clusters is expected to produce two supersedences, 

called contigs representing the contiguous stretches of genome sampled by sequencing. There

fore, a faster and more efficient clustering approach in the first phase on the entire input would 

subsequently allow for a thorough compute-intensive assembly phase that guarantees a highly 

accurate assembly. 

This divide and conquer strategy of first clustering and then assembling is beneficial, how

ever, only if the following assumptions hold: 

1. There is a distinct computational advantage of using clustering ahead of running an as

sembly software — the clustering phase takes significantly less time and/or substantially 

reduced memory when compared to running the assembler on the input sequence data 

directly. 

2. Given that each cluster is subsequently processed individually by an assembly program, 

the clustering phase should not separate any two sequences that may otherwise be as

sembled into a same contig. This is essential for the "correctness" of the final assembly, 

which is to ensure that the set of contigs output from a scheme that performs clustering 

followed by individual assembly of clusters is the same as the set of contigs produced by 

performing assembly directly on all the input sequences at once. 

3. There are sufficient number of sequencing gaps that can then lead to substantially smaller 

sized problems. A perfect sequencing strategy that covers every base along a genome 

would produce no sequencing gaps, and therefore clustering would not be effective in re

ducing the problem complexity for the subsequent assembly step. In practice, substantial 

number of sequencing gaps result even if a genome is sequenced with high coverage. For 

example, a WGS sequencing of the human genome with a 5.11X coverage performed by 

Venter et al. produced over 100,000 sequencing gaps to be finished after scaffolding [Ven-
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ter et al. (2001b)]. In other words, this clustering based approach to genome assembly 

presents a practically effective alternative. 

3.1.3 Computational Challenges 

While the challenges introduced by sequencing artifacts and large fragment collections are 

similar to those outlined for EST data in Section 3.1.1.3, there are two main challenges to 

performing clustering for genome assemblies: 

• Repeats: Genome assembly is complicated by the presence of repeats. Fragments 

originating from different but repetitive regions of a target genome may have spurious 

overlaps with one another. During clustering, these spurious overlaps may cause the 

repetitive fragments to cluster together thereby affecting the effectiveness of clustering to 

break the initial problem size. Traditional methods to mask known repeats in fragments 

as a preprocessing step can be used to reduce the number/size of such repeat-induced 

clusters. 

» Uniform vs. Non-uniform sampling: Unlike EST data, genomic fragment data 

generated from whole genome shotgun sequencing projects and hierarchical sequencing 

projects typically represent a uniform sampling over a target genome. This is because 

the fragments are generated with a particular coverage on the entire genome (or BAC, 

in case of hierarchical sequencing) specified at the time of sequencing. The implication 

of uniform sampling is that the number of genuine overlaps expected among fragment is 

linear in the size of the genome. However, this is not true with gene-enriched fragment 

data because the underlying sequencing selectively samples gene-rich portions of the 

genome, and the generated fragment data represent a non-uniform sampling over the 

genome. Therefore, the number of valid overlaps could be quadratic in the number of 

input fragments in the worst case. This makes the clustering of gene-enriched fragment 

data similar in complexity to the problem of clustering ESTs. None of the traditionally 

developed assemblers (including clustering based assemblers previously developed) are 
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suited for an efficient handling of gene-enriched assembly — to this end, we developed 

an efficient method, which will be discussed in the next chapter. 

3.2 Literature Review 

Numerous fragment assemblers and EST clustering methods have been developed over 

the past decade. In this section, we will review these methods with primary focus on their 

underlying algorithms to detect overlaps. Note that overlaps can be detecting by the naive 

approach aligning every pair of sequences as discussed in Section 3.1.1.3. For convenience, we 

use the word "sequence" to refer to both an EST and a genomic fragment. 

Among the assembler class of algorithms, we will discuss three programs, CAP3 [Huang and 

Madan (1999)], Phrap [Green (2003)] and TIGR Assembler [Sutton et al. (1995)], which are 

popular among EST clustering community as well [Liang et al. (2000)]; although in principle, 

any fragment assembly software can be used for clustering ESTs to the same effect. (For a 

detailed survey of fragment assembly and EST clustering algorithms, see [Huang (2005); Pop 

et al. (2002)] and [Kalyanaraman and Aluru (2005a)] respectively. Among the EST clustering 

algorithms, we will discuss UniGene [Pontius et al. (2003)], STACK [Christoffels et al. (2001); 

Miller et al. (1999)], Ulcluster [Pedretti (2001)], TGICL [Pertea et al. (2003)] and xsact [Malde 

et al. (2003)]. 

PaCE [Kalyanaraman et al. (2003a)], which is our clustering method can be applied to 

cluster both EST data and genomic fragments, and will be described in Chapter 4. 

3.2.1 Methods for EST Clustering and Genome Assembly 

3.2.1.1 TIGR Assembler 

The TIGR Assembler is one of the oldest fragment assembler programs, which has also been 

used in various EST clustering projects [Nelson et al. (1997); Rounsley et al. (1996); Satou 

et al. (2002); Ton et al. (2000)]. The algorithm is as follows: Given an input of n sequences, 

the overlap detection phase evaluates all (%) pairs — for each pair, the algorithm identifies 

all fixed-length («10 bp) exact matches and then considers only those "promising pairs" that 
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have substantially long stretches of such matches for further alignment computations. From 

the aligned pairs, the algorithm selects only those pairs with a satisfactory sequence similarity 

over the overlapping regions. The clusters are then formed by initially assigning one unique 

cluster for every sequence ("or seeds") that has "very small number" of overlaps and then 

iteratively merging clusters by considering the pairs in the decreasing order of their overlap 

quality. The output is a set of contigs. Storing and sorting overlaps implies a worst-case 0(n2) 

space complexity. The run-time is 0(n2) for evaluation of each pair of sequences plus the cost 

to align all the promising pairs identified by the algorithm. 

3.2.1.2 Phrap 

Phrap [Green (2003)] starts its overlap detection phase by building a list of sequence pairs 

with fixed-length matches and then sorting the list such that all matches of the same pair are 

consecutively placed. For each such "promising pair", it computes an alignment band centered 

around the diagonal containing all matches and then computes a best alignment using a banded 

version of the Smith-Waterman technique [Smith and Waterman (1981)]. If there are many 

matches, then the band of diagonals is made wider to include all the word matches. Using 

only those pairs with a band score above a certain desired threshold, a layout of overlaps 

is then constructed and subsequently a contig is constructed from the layout using only the 

portions of ESTs that have a high sequence quality (or "quality value"). Because of storing 

and sorting pairs with fixed-length matching substrings, this algorithm has a space complexity 

of 0(n2). Even though this is the worst-case complexity, the likelihood of such a quadratic 

requirement is high for EST data because of the underlying non-uniformity in sampling, as 

shown in Figure 3.1. The run-time complexity is worst-case quadratic and is dominated by 

the cost to align all the promising pairs identified by the algorithm. 

3.2.1.3 CAP3 

In the overlap detection phase, the CAP3 [Huang and Madan (1999)] algorithm detects 

pairs that show "promising" characteristics for good alignment, without having to enumerate 
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all pairs, as follows: concatenate all input sequences into one long string with adjacently 

placed strings separated by a special delimiter character. Quickly identify high scoring chains 

of "segment pairs" within each sequence against the concatenated string. This is implemented 

through a lookup table approach, similar to the method in BLAST [Altschul et al. (1990)]. 

A "segment pair" is an alignment without gaps and is initially computed by looking at all 

exact matches of a specified fixed-length and extending these matches as far as possible in 

either direction. Only those pairs that have a chain score greater than a specified threshold 

value are later considered for global alignment computation [Needleman and Wunsch (1970)]. 

The alignments are then considered in the decreasing order of their scores and an "overlap-

layout" is constructed using the order and orientation of each aligning pair. In this greedy 

process, inconsistencies due to violating alignments can be resolved in favor of the higher 

scoring alignments. The final step is to compute a multiple sequence alignment from each 

overlap-layout component, thereby resulting in a consensus contig. The space complexity is 

worst-case quadratic because of storing and sorting all the promising pairs. The dominant 

run-time cost is that of aligning all the promising pairs. 

A parallelized version of CAP3 is available. The parallel version called PCAP [Huang et al. 

(2003)] implements the serial CAP3 such that multiple independent serial jobs can be initiated 

simultaneously on multiple workstations of a cluster, each operating on an independent portion 

of the input sequence data. 

3.2.1.4 UniGene 

The UniGene project [Pontius et al. (2003)] undertaken by the NCBI is an initiative towards 

clustering all GenBank ESTs by organisms and by individual gene sources, i.e., ESTs from 

different spliced variants of the same gene are also clustered together. The UniGene clustering 

scheme performs incremental daily processing of ESTs submitted to the dbEST database, 

computed as BLAST alignments of each new EST with the contents of all individual clusters. 

Care is taken that each cluster contains at least one EST derived from the 3' terminus of 

the source mRNA transcript. This is ascertained by the presence of a polyA tail in the 
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corresponding EST(s) (which is not removed as part of its preprocessing step). Even though the 

run-time of the UniGene method is quadratic in the number of ESTs, incremental processing 

in batches allows for quick updating of clusters as new sequences are added to the database. 

The entire UniGene cluster database is accessible online at the URL http://www.ncbi. 

nlm.nih.gov/UniGene/. As of September 2005, the database contains over 700,000 gene-

oriented sequence clusters representing over 50 organisms, with the human and mouse col

lections leading the chart with 53,100 and 42,555 UniGene clusters respectively [Wheeler et al. 

(2005)]. 

3.2.1.5 STACK 

STACK (Sequence Tag Alignment and Consensus Knowledgebase) [Christoffels et al. (2001); 

Miller et al. (1999)] is one of the first EST clustering programs and was developed to achieve 

tissue-specific clustering that groups ESTs by transcript source. The underlying algorithm per

forms simple all-versus-all pairwise comparisons with the overlap between each pair detected 

through a word-multiplicity measure called d2, a distance measure to assess sequence dissimi

larities. Subsequently, the pairs with significantly small distances are used to form the clusters 

by an agglomerative approach called d2-duster [Torney et al. (1990)], as follows: initially, each 

input sequence occupies a cluster of its own, and as the program progresses each significant 

overlap merges the corresponding clusters forming a supercluster. This mechanism achieves 

a transitive closure clustering, in which two entirely different sequences are brought together 

because of a common third sequence with which each share a good overlap. Each cluster is 

post-processed by the Phrap assembler to build transcript assemblies. The STACK algorithm 

has a run-time complexity that is proportional to the product of Q) and the time taken to 

compute d2 measure. 

Because of its simplicity, the STACK algorithm is also easily parallelized [Carpenter et al. 

(2002)]. The all-pairs work is distributed evenly across processors, and the clustering results 

are collected and recorded serially by one processor. For an example of STACK'S application, 

see [VanBuren et al. (2002)]. 

http://www.ncbi
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3.2.1.6 TGICL 

The TGICL clustering software [Pertea et al. (2003)] was developed by TIGR. The algo

rithm achieves clustering by performing an all-versus-all pairwise alignment but using a greedy 

alignment algorithm called megablast [Zhang et al. (2000)]. The advantage of using megablast 

is that it provides a significant speedup («10 times) while aligning two highly similar se

quences over its dynamic programming counterparts, although the run-time increases as the 

similarity decreases. Because of its simplicity, this algorithm can also be easily parallelized. 

Post-clustering, CAP3 is used for assembling the sequences of each cluster. 

TIGR maintains a large database of clustered ESTs called the "TIGR Gene Indices". The 

initiative is towards maintaining a compendium of transcriptomes of several organisms. The 

database has clusters built for ESTs collected from over 32 animal species including the human 

and mouse, and over 33 plant species including wheat and maize. 

3.2.1.7 Ulcluster 

The Ulcluster method [Pedretti (2001)] was originally developed for clustering 3' generated 

ESTs into 3' transcripts. The algorithm is based on the following incremental approach: 

Initially, each sequence is in its own cluster. At any point of execution, a list of "representative 

ESTs" is maintained for each cluster (typically its longest EST(s)). A global hash table is 

constructed by preprocessing all input ESTs, such that it indexes all fixed-length (<16 bp) 

substrings within all ESTs. The ESTs are then considered one at a time. For a given EST, all 

clusters with at least one representative EST that has at least a specified number of fixed-length 

matches are identified. Alignment computations are then performed between the input EST 

and each of the representative ESTs identified in each cluster. The input EST (and its cluster) 

is then merged into one of the clusters containing the best overlapping representative, provided 

that best alignment(s) pass the specified similarity threshold; otherwise the clusters are left 

intact. The space complexity is proportional to the size of input plus the size of the global hash 

table. The worst case run-time complexity is 0(n2) multiplied by the average cost to align 

two sequences; for large clusters, the run-time is likely to be close to the worst-case behavior, 



www.manaraa.com

35 

as all potential cluster merges are evaluated through alignments with ESTs considered one at 

a time. 

A parallel version of the Ulcluster algorithm has also been developed [Trivedi et al. (2002)]. 

The input ESTs and the initial set of clusters are evenly partitioned across processors, and 

each processor constructs the hash table for its local portion of the ESTs. The algorithm then 

performs one parallel step for each input EST, in which the sequential algorithm is run locally 

on each processor and the cluster to which the EST has to be merged with is decided through 

a collective communication at the end of the step. There are two main drawbacks with this 

parallel approach: (i) the number of parallel steps is proportional to the number of input ESTs, 

independent of the number of processors used, and (ii) the speedup achieved in each step is 

dictated by the processor with the most number of alignments to compute. The program is 

extensively used on clustering rat ESTs (http://ratest.eng.uiowa.edu). 

3.2.1.8 xsact 

Concurrent to our research, Malde et al. [Malde et al. (2003)] developed xsact, which is 

a serial program for EST clustering that also generates promising pairs based on maximal 

matches. The xsact algorithm first constructs a generalized suffix array on the input ESTs. 

This is achieved by recursively sorting prefixes, similar to the approach in [Manber and Myers 

(1993)] — this algorithm was developed prior to the development of linear time algorithms for 

directly constructing suffix arrays [Karkkainen and Sanders (2003); Kim et al. (2003); Ko and 

Aluru (2003)]. The algorithm then detects each pair with a maximal match of length I bp, I 

times, but reports only one instance of it to the alignment module. The pairs are generated in 

no particular order, and all reported pairs are aligned. Only those alignments which satisfy a 

specified similarity threshold are stored. The pairs are then sorted in decreasing order of their 

alignment scores and considered in that order for cluster merges. The space complexity of the 

algorithm is dominated by the number of pairs that have satisfactory alignments, which within 

each generated EST cluster is worst case quadratic in its number of ESTs. The run-time is 

dominated by the cost to align all promising pairs reported. 

http://ratest.eng.uiowa.edu
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3.2.2 Discussion of Related Work 

Given the complexities of sequence data, ensuring both high quality and high performance 

in a clustering method is the primary challenge faced by algorithm designers. Table 3.1 summa

rizes the various computational aspects of each of the EST clustering algorithms and fragment 

assemblers developed prior to or during this dissertation research. For comparison purposes, 

the table also shows the corresponding aspects of our method, PaCE. The input number of 

sequences is denoted by n. The average length of a sequence is assumed to be a large con

stant for the purpose of run-time and space complexity calculations. Both expected ("Exp.") 

and worst-case ("WC") space complexities are provided for each method. The run-time com

plexity is proportional to the product of the number of alignments computed and the taken 

to perform each alignment. The algorithm used to compute pairwise alignment is indicated 

against each entry; DP denotes one of dynamic programming table based methods. WGS, 

BAG and GE stand for fragment data generated from whole genome shotgun, BAC-by-BAC 

and gene-enriched sequencing projects respectively. 

3.2.2.1 Run-time Concerns 

Even though run-time intensive, alignment based methods provide the most accurate means 

to capture sequencing errors and natural variations. For this reason, methods such as TIGR 

assembler and UniGene perform all vs. all (i.e., (")) pairwise sequence alignments, although as 

many alignments may not be necessary to arrive at the final answer. The all vs. all approach 

is not scalable because of a strict quadratic increase in run-time. For example, even assuming 

that it takes only about a microsecond to align two sequences on a GHz processor, performing 

all vs. all alignments for 1 million fragments will take 6 days of compute time; while for 2 

million fragments it would 24 days. 

One way to overcome this problem is to resort to faster methods of detecting overlaps, how

ever, at risk of compromising on the optimality of overlap quality — e.g., STACK'S d2 method. 

Alternatively, a more efficient approach to reduce the run-time is to compute alignments only 

for a reduced subset of the Q) pairs, without missing any overlapping pair. A frequently used 
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Software Target Space complexity Alignments Promising Parallelism 
Application(s) Exp. WC computed pairs scheme 

TIGR Genome 0(n) 0(ra2) 8(nf) look-up No 
assembler assembly 

(WGS, BAC) 
DP table 

Phrap Genome 
assembly 
(WGS, BAC) 

0(ra) 0(n2) 0(n2) 
DP 

look-up 
table 

No 

CAP3/PCAP Genome 0(n) 8(n?) 0(n2) look-up limited 
assembly DP table scaling 
(WGS, BAC) 

UniGene Incremental 
EST 
clustering 

0(ra) 0(n) 0(n2) 
DP 

all vs. all No 

STACK EST 
clustering 

0(n2) 0(n2) 
(P method 

all vs. all large 
memory 
SMP 

TGICL EST 
clustering 

eM 0(n2) 0(n2) 
megablast 

all vs. all large 
memory 
SMP 

Ulcluster 3' EST 0(n) 0(n) 0(n2) look-up limited 
clustering DP table scaling 

xsact EST 
clustering 

8(%12) 0(n2) 
DP 

maximal 
match 
approach 

No 

PaCE EST 0(n) 0(n) 0(#promising maximal massively 
clustering, pairs), DP match parallel 
genome approach 
assembly (GE) 

Table 3.1 Summary of various previously developed fragment assemblers 
and EST clustering methodologies. PaCE is our methodology. 
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technique used to accomplish this is to preprocess the sequences before computing any align

ment such that only those pairs that show a significant promise for a potential good overlap are 

subsequently considered for alignment computation. Detecting exact matches is often much 

quicker than detecting inexact matches, and therefore an exact match detection scheme can 

be used to identify such promising pairs. Most of the methods in Table 3.1 identify exact 

matches as short fixed length matches using lookup table [Aluru and Ko (2005)] approaches. 

The PaCE algorithm provides a more efficient alternative by identifying matches as variable 

length maximal matches. The difference in these methodologies will be elaborated in the next 

chapter. 

3.2.2.2 Memory Concerns 

In large-scale sequence analysis, more often than not, memory concerns pose a more serious 

problem than long run-times. As Table 3.1 shows, all the three fragment assembly programs 

have an expected linear memory requirement when applied to genome assembly. This is because 

of the uniform sampling that is expected in WGS and BAC sequenced data. However, if 

they are applied to non-uniformly sampled data (e.g., ESTs), the memory requirement grows 

quadratically. As for EST clustering, even the expected memory requirement is quadratic for all 

approaches except the incremental UniGene1. This quadratic memory requirement is because 

the underlying methodologies store overlaps in memory — a strategy that is not necessary for 

clustering, as demonstrated by the PaCE method. 

3.2.3 Performance Evaluation of Related Work 

3.2.3.1 EST Clustering 

For EST clustering, performance results have been published in the past by other groups 

working on different software programs. Carpenter et al. (2002) report the clustering of 15,876 

human ESTs on an SGI Origin 2000 shared memory machine2 using STACK'S d2-duster 

'The memory requirement is calculated assuming that a new increment of sequences is << the number of 
sequences already clustered; otherwise UniGene's memory requirement increases quadratically as well. 

2Available memory is not specified in the paper. 
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Number of saved 
pairwise overlaps 

(Reported by CAPS) 
561,916 

2,308,885 
21,608,972 
16,357,088 

X 
X 
X" 

Table 3.2 (a) Run-times (in minutes) of assembly programs on an ar
bitrary mouse EST collection downloaded from GenBank. 'X' 
denotes that 2 GB memory was not sufficient for the program to 
complete, (b) Pairwise overlaps stored by CAP3. 

method in 2 minutes. The paper also reports that the largest data clustered contains 1,198,607 

ESTs; however, the performance results are not reported. The largest clustering reported by 

the TGICL program [Pertea et al. (2003)] was that of 1.7 million ESTs of an unspecified species 

in 1 hour of a PVM cluster with 20 Pentium III nodes. Overlaps are detected by the megablast 

program. 

Of the fragment assemblers, the TIGR assembler, Phrap and CAP3 programs are popular 

for EST clustering as well [Liang et al. (2000)]. We evaluated these three serial programs using 

a single Intel Xeon CPU 3.06GHz processor of an IBM xSeries node, each with access to 2 GB 

RAM. Table 3.2 shows the results on various subsets of a mouse EST collection downloaded 

from GenBank and containing 200,000 ESTs. The table also shows the number of valid overlaps 

detected and saved by the CAPS program for each of the input subsets. As can be seen, the 

number of overlaps increases quadratically from the 5,000 data point to 10,000, and rather 

disproportionately for 25,000 and 50,000 ESTs. This is because several overlaps are screened 

out by the program as "false" candidates due to chimeric ESTs in the input. The non-uniform 

increase in the run-time with input size is consistent with the non-uniformity in the detected 

overlaps. 

The non-uniformity in the expected run-times and overlap information depends on the EST 

Number of 
input sequences 

TIGR Assembler Phrap CAPS 

5,000 17 5 44 
10,000 168 17 186 
25,000 X 211 704 
50,000 X 219 585 

100,000 X 340 X 
150,000 X X X 
200,000 X X X 

1 
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Overlaps vs. ESTs 
x 10 

CAPS software 

Q. 

E 0.5 

Input Size (in number of ESTs) x 1Qs 

Figure 3.4 Number of overlaps stored by the CAP3 program while cluster
ing different subsets of a rat EST data set. The peak memory 
usage reached 2 GB for 150,000 ESTs. 

data. To further understand this, measured the number of overlaps detected by CAP 3 on a 

different input data — an arbitrary collection of 150,000 rat ESTs downloaded from GenBank. 

The results plotted in Figure 3.4 indicate a quadratic increase in overlaps for this data, and 

also that CAP3 could complete for a bigger data (up to 150,000) with an available 2 GB 

RAM, without running out of memory. Both these observations confirm the strict input data 

dependency of the underlying problem. 

3.2.3.2 Genome Assembly 

Several whole genome projects have been conducted in the past, with one of the largest 

genomes being that of the human. The Celera genomics assembly team estimated that it would 

take tens of thousands of CPU hours and approximately 600 GB of memory to assemble the «3 

billion bp genome based on their previous fruitfiy assembly [Myers et al. (2000)]. To meet these 

high computational demands, Celera used ten 4-processor SMP clusters with 4 GB memory 

each, along side a 16-processor NUMA machine with 64 GB shared memory, and engineered 

an incremental approach that reduced the peak memory usage to 28 GB. The assembly took 

20,000 CPU hours on 27.27 million WGS fragments. 

[Huang et al. (2003)] report the assembly of mouse genome using PCAP, which is the 
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Number of processors 4 8 16 32 64 
Run-time in minutes 21 17 14 81 X 

Table 3.3 Run-time scaling of PCAP on 322,000 gene-enriched maize frag
ments. "X" denotes that the program was hung performing I/O 
operation. 

parallel version of CAPS assembler. The input comprised of 33 million mouse WGS fragments. 

The compute platform included 20 Compaq ES40 servers, each with 4 processors and 4 GB 

RAM, along side another Compaq ES40 server with 16 GB RAM. Also provided is a 32 

GB shared file system and a 17 GB scratch space on each server. Multiple alignment jobs 

were launched simultaneously on each processor, and the implementation does not support 

any interprocessor communication; instead, data sharing is through the file system, making 

the program I/O intensive. The assembly was completed in 7 days (on 80 processors) and 

the number of overlaps was only 273 million, confirming the expected linear complexity with 

uniformly sampled WGS data. 

To study the effect of I/O on scaling using a commodity cluster, we ran CAP3 on «322,000 

maize gene-enriched sequence data of total length 250 million bp. The platform used was an 

IBM xSeries cluster with Intel Xeon processors. The run-time scaling is reported in Table 3.3. 

As the table shows, the run-time actually increases after 16 processors, and on 64 processors, 

the program failed to respond. 

3.2.4 Need for Scalable High-performance Computing Methods 

Given the obvious limitations in compute power and memory capacities of a serial computer, 

several EST clustering and genome assembly programs have adopted parallelism as a means to 

increase available memory and achieve additional speedup. All these parallel approaches are 

direct extensions of their corresponding serial counterparts, implying a strong coupling among 

the parallel jobs due to high data inter-dependencies. As a result, the projects involving these 

methods resort to using high-end workstations with large shared memory so that the entire 
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data can be made available through the shared memory to all the processors. If the entire data 

does not fit in one shared memory machine, then multiple machines are used, different portions 

of the data are loaded from the file system into a local shared memory, and the processing is 

performed in batches. 

The rudimentary nature of these parallel schemes results in poor scalability, I/O-intensive 

computation and very long run-times. Moreover, the inherent sequential approach within these 

algorithms limits the speedups achievable from these parallel systems. In addition, the shared 

memory architecture itself imposes a limitation on the number of processors — only a few tens 

to just over a hundred processors are available in state-of-the-art shared memory architectures. 

In contrast, several hundred gigabytes to even terabytes of memory is easily available in state-

of-the-art distributed memory architectures — e.g., the IBM BlueGene/L architecture supports 

thousands to even tens of thousands of processors with an aggregate distributed memory of 

several terabytes available through a fast interconnection network. Such systems could serve 

as ideal platforms for performing large-scale sequence analysis, providing both an order of 

magnitude speedup and capability to scale up to much larger data sets. The main challenge, 

however, is to have an inherently parallel algorithm that can efficiently exploit the high compute 

power and memory capacities. 
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CHAPTER 4. A SCALABLE PARALLEL CLUSTERING 

FRAMEWORK FOR LARGE-SCALE SEQUENCE ANALYSIS 

In this dissertation, we present the design, development and application of a scalable parallel 

algorithm and software for performing DNA sequence clustering. A preliminary version of this 

method was developed as part of my M.S. thesis research [Kalyanaraman (2002)]. 

4.1 The Sequence Clustering Problem 

Problem Statement: Let S — {&], s2, - • •, s„} denote the set of n input sequences over 

an alphabet £. Two sequences .s,, s,j € S are said to be related if either .s, and Sj show a 

"significant" overlap, or 3sk G S to which both s, and Sj are related. The problem of sequence 

clustering is to partition S such that V.sz, sj E S, Si and Sj are in the same subset (or "cluster" ) 

if and only if s, and Sj are related. 

For generality, let us not assume anything on the type qf DNA sequence data to be clustered 

— they can be ESTs, cDNAs, or genomic fragments, or any other type of biological sequence 

that can be computationally represented as a string over the DNA alphabet. Also, the above 

formulation is generic enough to accommodate any preferred alignment method. For instance, 

in the context of clustering for genome assembly, two sequences sharing a good suffix-prefix 

alignment are potential candidates to be genomic neighbors, and can therefore be considered 

to have a significant overlap. In the context of EST clustering, if the underlying objective is 

to cluster together sequences derived from the same gene, then overlaps can be detected as a 

chain of local alignments. Without loss of generality, we will henceforth assume that the choice 

of overlap detection method is suffix-prefix alignment computation. 
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A 
t 

fz h 

I 
CAGGAGGACCAG h 

AACGAGA 

AGATCACAG 

CAGGAGATA GGACCAGATATAT 

TCTCTGGACCA h 

AACGAGATCACAGGAGATA ????????GGACCAGATATAT 

Consensus Sequence (b) 

Figure 4.1 Examples to show the effect of transitive closure clustering in 
the context of genome assembly. 

The above formulation of clustering is also sometimes referred to as transitive closure 

clustering because the definition of relationship between sequences is transitive in nature. 

Thus it is possible to have two entirely distinct sequences in the same cluster simply because 

there is a third sequence to which both are related. An example in the context of genome 

assembly in which three fragments are clustered together based on suffix-prefix alignments is 

shown in Figure 4.1a. Note that the clustering is effected regardless of the existance of an 

overlap between /i and f$. This formulation does not guarantee that the sequences in the 

same cluster conform to a consistent overlap layout. An illustration of an inconsistent layout 

shown by sequences in the same cluster is illustrated in Figure 4.1b. The idea is to defer 

the task of resolving such inconsistencies to later stages post-clustering, and instead primarily 

focus on breaking down the initial problem size through clustering. 

In what follows, we will explain our parallel clustering algorithm. For ease of exposition, 

we first describe our serial algorithm, and later describe its parallelization. 

Given that overlaps constitute the primary basis of clustering, a simple approach to cluster 

n sequences, each of length I bp on an average, is by evaluating all pairs of sequences for 

potential overlaps. Figure 4.2 outlines this approach. The "Find" operation on a sequence 

returns its current cluster, and the "Merge" operation on two clusters performs a union of the 

two clusters. This simple approach to clustering has the following advantage: even though 

4.2 A Serial Clustering Algorithm 
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Algorithm 1 A Naive Algorithm 

Input: Set S = {si,S2, • • • sn} of n sequences 
Output: A partition C = {Ci, C2,... Cm} of S, 1 < m < n 

1. Initialize Clusters: 

VI < z < Ti, Cj •(— {sz}, C <— C U Ci 
2. FOR V(sj,sj) DO 

score Align{si, Sj) 
IF score is significant THEN 

Cp Find(si) 
Cq f- Find(sj) 
Merge{Cp,Cq) 

3. Output C 

Figure 4.2 A naive serial clustering algorithm. The worst-case run-time 
and space complexities of the algorithm are 0(n2 x I2) and 
0(n x I), respectively. 

Step 2 loops (2) times, the overall number of "Merge" operations is limited to at most n — 1, 

regardless of the nature of sequence data. Each merge corresponds to an overlapping pair of 

sequences, although the converse need not be true. However, it is not possible to enumerate 

these pairs directly. 

Step 1 takes 0(n) run-time. Each of the Q) loops in Step 2 computes an alignment that 

costs 0(l2). The "Merge" operation can be implemented as a simple set union operation 

that takes 0(n) time, and the "Find" operation can be implemented to run in 0(1) time 

through an array based implementation. The overall run-time complexity is 0(n2 x l2)+0(n2) 

(= 0(n2 x I2)), and the space complexity is 0(n x I). 

Observation 1 At any stage of Algorithm 1, the set of clusters C represents a partition of the 

input set S. This implies that the "Merge" and "Find" operations are disjoint set operations. 

This observation can be exploited by implementing the set of clusters as a union-find data 

structure [Tarjan (1975)]. This enables each "Merge" and "Find" operations to be performed 

in time proportional to the inverse of Ackerman's function, which is a very small constant for 
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all practical purposes. 

4.2.1 Reducing the Number of Pairs Aligned 

4.2.1.1 Promising Pairs 

Algorithm 1 computes 6(n2) alignments. One way to reduce the number of the alignments 

computed without affecting the quality of clustering is to take advantage of the low frequency 

of sequencing errors and natural variations expected in sequence data. Because of low error 

rates, sequences that show significant overlaps are expected to contain long exact matches, 

while the converse is not necessarily true. This observation is exploited by several previously 

developed methods in the following manner: restrict alignment computations to only those 

pairs that contain exact matches of a specified fixed-length w. The underlying algorithms 

identify such pairs using a lookup table to index all w—length substrings within each input 

sequence [Aluru and Ko (2005)]. In practice, the value of w is limited to just over 10, even 

though low error rates may allow for higher values. This is because the lookup table's size is 

exponential in w. For example, a value of 12 implies 412 = 16 million entries to store (for DNA 

alphabet); while an expected error rate of 2% over a 100 bp long aligning region allows a value 

up to 33. Another downside to this fixed-length exact match based approach is that a long 

exact match of length I will reveal itself as (Z — w + 1) consecutive w—length matches. 

To overcome the above limitations, we define a promising pair as follows: 

Definition 1 A maximal match between a pair of sequences is an exact match that cannot be 

extended on either side to result in a longer match. 

Definition 2 A promising pair is a pair of sequences that has a maximal match of length at 

least w. 

The value of w can be calculated as follows: if e denotes the expected sequence error 

rate (0 < e < 1), then for two sequences to align over a length Za, it is necessary (but not 

sufficient) that the aligning region contains an exact match of length at least w = L6Xj"+1 J • In 
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Section 4.2.2, we describe our algorithm to generate promising pairs in amortized O(l) time 

per pair. 

4.2.1.2 Clustering Heuristic 

Another independent way to reduce the number of pairs aligned from Q) is by taking 

advantage of the following observation. 

Observation 2 Once a pair of clusters have been merged, it is no longer necessary to evaluate 

any two sequences originating from the merged cluster, as the result has no further effect on 

clustering. 

This implies that it is sufficient to compute alignments only for pairs that have sequences 

in different clusters. If both sequences of a pair are in the same cluster, then they are not 

aligned, thereby resulting in run-time savings. If the sequences are in two different clusters, 

an optimal alignment is computed. If the resultant alignment quality satisfies the specified 

overlap criteria, then the clusters containing the two sequences are merged as in Algorithm 1; 

otherwise, the clusters are left intact and the alignment effort is wasted. 

While the above technique has the potential to reduce the number of pairwise alignments 

computed, it does not guarantee the same. In the worst-case event of no overlapping pairs of 

sequences in an input, this scheme still evaluates all Q) pairs. For this reason, this improvement 

is only a heuristic; henceforth, we will refer to it as the clustering heuristic. On a similar note, 

generating promising pairs is also only a heuristic; in the worst-case, all sequences can share 

an exact match of length w, while no sequence overlaps with any other sequence. 

4.2.1.3 Pair Generation Heuristic 

Run-time savings achieved using the promising pair heuristic is data dependent — the 

presence or absence of sequence pairs with sufficiently long maximal match is a property of 

the input data. In case of the clustering heuristic, however, this dependency is only part of it. 

A more important factor that dictates the number of pairs aligned is the order in which the 

promising pairs are processed. A pair that passes the overlap test leads to merging of clusters, 
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thereby obviating the need to perform any further alignments for pairs that are part of the 

same cluster. While such pairs cannot be predicted prior to their alignment evaluations, their 

early identification causes clusters to merge sooner, which in turn leads to potential savings in 

run-time. This hypothesis forms the basis of our pair generation heuristic, which is basically 

a greedy mechanism to maximize the run-time savings achievable from the combination of the 

promising pair and clustering heuristics. 

The pair generation heuristic is as follows: Instead of generating promising pairs in an 

arbitrary order and considering them for potential overlaps in that order, generate and consider 

them in non-increasing order of their maximal match lengths — longer a maximal match 

between two sequences, higher the likelihood of the pair succeeding the overlap test. Therefore, 

evaluating pairs in non-increasing ("decreasing" for ease of exposition) order of their maximal 

match lengths is expected to result in early cluster merges, potentially reducing subsequent 

alignment computation. Note that the heuristic also requires that the promising pairs be not 

just considered but also generated in decreasing order of maximal match lengths — generating 

all promising pairs and later sorting them would involve storing all promising pairs, which could 

be quadratic in the worst case. For this reason, we developed an "on-demand" promising pair 

generation algorithm that does not necessitates storing of pairs. The overall pair generation 

algorithm is space optimal and will be described Section 4.2.2. Taking into account all the 

heuristics described so far, Algorithm 1 can be improved as shown in Figure 4.3. 

4.2.2 An Optimal Algorithm for On-demand Generation of Promising Pairs 

Ideally, each promising pair should be generated only once. But a given pair of strings 

may have multiple distinct maximal matches, or a given match could be maximal in multiple 

pairs of locations between the same two strings. See Figure 4.4 for an illustration. One way 

to avoid generating multiple copies of the same pair in such cases is to record a pair the first 

time it gets generated and later discard any future generation of the same pair. This simple 

scheme, however, requires storing all generated pairs, potentially requiring 0(n2) memory. As 

a compromise, the algorithm described below operates in linear space and generates each pair 
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Algorithm 2 Algorithm 1 with Promising Pairs, Clustering and Pair Generation Heuristics 

Input: Set S — {si, S2, • • • sn} of n sequences 
Output: A partition C = {C\, C?,... Cm} of S, 1 < m < n 

1. Initialize Clusters: 
C < - 0  
VI < z < n, Cj {s,}, C C U Ci 

2. REPEAT 
( s i ,  S j )  < —  generate next promising pair in decreasing order of maximal match length 
C p  < r -  F i n d ( s i )  

Cq <- Find( s j )  
IF Cv + Cq THEN 

score <— Align( s i ,  S j )  

IF score is significant THEN 
Union(Cp, Cq) 

UNTIL no more promising pair to generate 
4. Output C 

Figure 4.3 Algorithm 1 improved by the promising pairs, clustering and 
pair generation heuristics. 

at least once and at most as many times as the number of distinct maximal matches in it. 

For example in Figure 4.4, the algorithm will generate (si, S2) exactly once, while (53,54) is 

generated at least once and at most twice. 

4.2.2.1 Notation 

Without loss of generality, assume that 5 is a set of DNA sequences over the alphabet 

S = (A, C, G,TJ. For a string s: let s[i] denote the character at position i; s(i) denote the 

suffix starting at z; and |s| denote the length of s. Let N = S"=i IsiIi.e., / = ^. A match a 

between two strings is said to be left-maximal (alternatively, right-maximal) if the characters 

that immediately precede (alternatively, follow) a in the two strings are different or if a is a 

prefix (alternatively, a suffix) of either string. Thus a is a maximal match if it is both left-

and right-maximal. 

By definition, a suffix tree of a string is a rooted compacted trie of all its suffixes [Weiner 

(1973)]. A generalized suffix tree (GST) of a set of strings is a rooted compacted trie of all 
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(a) (b) 

Figure 4.4 Examples showing two cases of maximal matches, (a) A match 
a is maximal in two pairs of locations (ij) and (i,k) between 
si and S2- (b) Two maximal matches a and 7 exist between S3 
and S 4 .  

suffixes all strings [Gusfield (1997a)]. 

Let G denote the GST of all strings in S. A special terminal character '$' is appended to 

each input string in S to ensure there exists a leaf node for every suffix of each string. Let 

the path-label of a node u be the string obtained by concatenating all edge labels from the 

root to u; if u is a leaf node, the terminal character '$' is excluded in its path-label. Let the 

string-depth of a node u denote the length of its path-label. 

4.2.2.2 The Algorithm 

The GST G for S is first constructed using a linear time algorithm [Ukkonen (1995); Weiner 

(1973); McCreight (1976)]. The nodes in G with string-depth > w are then sorted in decreasing 

order of string-depth. Because string-depth of any node in a GST is bounded by the length of 

the longest string in S, radix sorting is used to run in linear time. 

The main idea behind our pair generation algorithm is the following: Sequences Sj and Sj 

share a maximal match a if and only if 

CI. 3 u such that path-label(u)= a. 

C2. 3 k and I such that f t{k) and fj(l) are in subtree rooted at u. 
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C3. (right maximality) If u is not a leaf, f l{k) and /'-,(/) are in subtrees of different children 

of u. 

C4. (left maximality) If k ̂  1 and I ^ 1, fa[k — 1] ^ fj[l — 1]. 

Maximal matches can be generated by considering each node in the GST and identifying 

pairs of suffixes in the node's subtree that satisfy C3 and C4. To generate maximal matches 

in decreasing length order, we sort the nodes in GST in decreasing order of the lengths of 

their path-labels using radix sort, and process them in that order. Instead of checking C3 and 

C4 for each pair, we generate maximal matches in amortized 0(1) time per pair as follows: 

For node u and c € S, let ic(u) = {s,(j) j s,(j) is in subtree of it; j > 1; a,[j — 1] = c}, and 

l>(u) = (sj(l) | ,5,(1) is in subtree of u}. These are collectively known as Isets at u. The Isets 

at leaves are computed directly. For an internal node u and c G S U {A}, £c(u) = Uv ̂ c(u') 

over all children u' of u. The Isets are maintained as linked lists to allow constant time union 

operations. 

Consider pair generation at internal node u corresponding to path-label(u) as the maximal 

match. At this stage, pair generation at u's children would have been completed and their Isets 

are known. The set of pairs at u are obtained by computing U lc{u') x lc* ('«"), where u' and u" 

are two different children of u (to satisfy C3), and c^c' or c = c' = A (to satisfy C4). After 

pair generation at u is finished, its Isets are computed from the Isets of its children. At a leaf 

u, right maximality is automatically satisfied. Hence, pairs are generated as U £c(u) x lc'{u), 

where c^c zorc = c /  = A. 

Note that the above scheme generates pairs in the form ( s i (j), s #  (j1)) instead of (s,, sz-). 

This is needed if pairwise alignment computations are anchored to the maximal matches. If 

arbitrary suffix prefix alignments are computed, then it is wasteful to generate the same pair 

multiple times. In such a case, the above algorithm can be modified to reduce the number of 

duplicate generations of the same sequence pair, while still guaranteeing 0(1) generation time 

per pair. This improvement is explained below. 

Instead of partitioning the suffixes in a node's subtree into its Isets, we now partition the 

strings represented in a node's subtree. If multiple suffixes from a string are present in the 
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subtree, an arbitrary suffix is chosen, and the string is placed into the Iset corresponding to 

the character in the string that precedes this suffix. Formally, s, G lc(u) iff the suffix s,(j) 

exists in subtree of u, either j = 1 and c = A or st[j ~ 1] = c, and Sj is not part of any other 

Iset at u. The partitioning of strings represented in the subtree of a node u may no longer 

unique; however, any partitioning suffices. 

Before generating pairs from an internal node u, the Isets at it's children are traversed 

to detect and remove duplicate occurrences of any string. After this duplicate elimination 

process, the pair generation algorithm is run as before. 

To understand the logic behind this duplicate elimination method, note that duplicates of 

a given pair (st, Sj) implies one of following cases: 

1. if a maximal match occurs as multiple substrings in at least one of the strings. An 

example of the latter case is shown in Figure 4.4; 

2. if the two sequences share more than one maximal match. 

In the first case, we can expect the string with multiple occurrences of the maximal match 

substring to be represented in more than one Iset of it's children. The above mechanism will 

detect and eliminate these duplicates. It cannot, however, guarantee the detection of duplicates 

arising due to the second case because such sequence pairs may get formed under nodes that 

do not share an ancestor-descendant relationship. 

The algorithms for generating pairs from leaf and internal nodes are given in Figure 4.5. 

Traversing Isets of all child nodes to eliminate multiple occurrences of a string can be imple

mented to run in time proportional to the sum of the cardinalities of those Isets. A global 

array M[1... n], one entry for each input string, is maintained. Let u be an internal node 

currently being processed. The first time a string Sj is encountered, M[i] is marked with it's 

identifier. Any future occurrence of Sj under any of it's child nodes is detected as a duplicate 

occurrence by directly checking M[i\. A linked list implementation of the Isets allows the union 

in step 3 of GeneratePairsFromlnternalNode to be computed using 0(|£|2) concatenation 

operations. This restricts the overall space required to store Isets to O(N). The assumed 
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Algorithm 3 Pair Generation from a GST based on Maximal Matches 

GeneratePairsFromLeaf(Leaf Node: it) 
1. Compute the Isets at u by scanning its labels. 
2. Compute: 

^ = U(c;,c,) W«) x V(ci,cj) a.t., q < <% or % = c, = A 

GeneratePairsFromInternalNode(Internal Node: u) 
1. Traverse all Isets of all children ui, U2, • • •, uq of u. 

IF a string is present in more than one Iset THEN 
all but one occurrence of it are removed. 

2. Compute: 
Pu — U(ttfc,u;) U(cj,Cj) iuk) x £-Cj {v>l), V(ufe,Xij), V(Ci,Cj) s.t., 

1 < k < I < q, Ci ^ Cj or Ci = Cj = X 
3. Create all Isets at u by computing : 

FOR Vcj e £ U {A} DO 
iu) = Uuj. £ci{uk)j 1 Hkk <q 

Figure 4.5 Algorithm for generating promising pairs from a generalized 
suffix tree. 

arbitrary orderings of the characters in S U {A} and the child nodes are to limit generating a 

pair at u to one of its forms: (s, s') and (sz, s). 

In summary, the sets of sequence pairs generated at an arbitrary leaf node u and an arbitrary 

internal node v are given by: 

Pu = {(s,s') | s € £Ci(u),s' G lCj(u),Ci,Cj G SU {A},((c, < cj) V (c, = Cj = A))} 

= {(a,/) | s E G € 2U{A},& < !,((% ̂  V (q =(% = A))} 

The overall clustering algorithm can be divided into a preprocessing phase followed by a 

clustering phase, as shown in Figure 4.6. In the preprocessing phase, the GST for all n input 

sequences is constructed and its nodes are sorted based on their string-depths. The clustering 

phase is responsible for pair generation, alignment computation and management of clusters. 

The following lemmas prove the correctness and run-time characteristics of the algorithm: 



www.manaraa.com

54 

Algorithm 4 The Sequence Clustering Algorithm 

Input: Set S — {si, S2, • • • sn} of n sequences 
Output: A partition C — {Ci, C2, • • • Cm} of S, 1 < m < n 

1. Initialize Clusters: 

VI < i < n, Ci i— {sj}, C <- CU Ci 
2. G <— Construct the Generalized Suffix Tree of S 
3. Radix sort nodes in G with string-depth > w in decreasing order of string-depth. 
4. FOR each u in the sorted order DO 

REPEAT 
( s i ,  S j )  <— generate next promising pair from u  

C p  4 —  F i n d ( s i )  

Cq <- Find( s j )  

IF Cp + Cq THEN 
score 4- Align( s i , s j )  

IF score is significant THEN 
Union(Cp, Cq) 

UNTIL no more pairs to generate from u 
4. Output C 

Figure 4.6 Our sequence clustering algorithm. Steps 1 and 2 are collec
tively called the "preprocessing phase" and the remainder of 
the algorithm is called "clustering phase". 

Lemma 1 Let u be a node with path-label a. A pair (s, s') is generated at u only if a is a 

maximal match between s and s'. 

Proof: At a leaf node u, all pairs of strings represented in its Isets are automatically right-

maximal by definition. If the algorithm generates a pair (s, s') at u, it is because the strings 

are either from Isets representing different characters or from the Iset representing A. In either 

case, a is a maximal match between s and s'. For an internal node it, the algorithm generates 

a pair (s, s') only if (i) s and s' are from Isets either representing different characters or A, and 

(ii) s and s' are from Isets of two different children of u. The former ensures a is left-maximal; 

the latter ensures a is right-maximal. Thus a is a maximal match of s and s'. • 

Corollary 1 The number of times a pair is generated is at most the number of distinct max
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imal match substrings of the pair. 

Proof: Follows directly from Lemma 1 and the fact that a pair is generated at a node at 

most once. The latter is true because for any internal node the algorithm retains only one 

occurrence of a string before generating pairs; whereas for any leaf node there can be at most 

one occurrence of any string in its Isets. While this bounds the maximum number of times a 

pair is generated, a pair may not be generated as many times. • 

Note that the converse of Lemma 1 need not necessarily hold; i.e., due to duplicate elimi

nation, some of the maximal matches between a pair may go undetected. This could, however, 

happen only if the same pair was generated elsewhere because of a longer maximal match. In 

other words, it is guaranteed that the algorithm guarantees each promising pair at least once, 

as proved below. 

Lemma 2 A pair (s, s') is generated at least once if it is a promising pair. 

Proof: Consider a, a largest maximal match of length > w between strings s and s'. This 

implies that there exists either a leaf or an internal node u with path-label a. Also 3 suffixes 

s(z) and s'(z') represented in u's subtree that share a common prefix a. Thus if u is a leaf 

node, then s G £Cl (u) and s' G lC2(u) such that c\ / C2 or c\ = C2 = A, implying that the 

algorithm will generate the pair at u. If u is an internal node, then the fact that a is a largest 

maximal match ensures that s and s' will occur , in Isets of different children, even after the 

duplicate elimination process at u] these Isets will correspond either to different characters or 

to A. Thus the algorithm will generate the pair at u. • 

Lemma 3 The algorithm runs in time proportional to the number of pairs generated plus 

O(N). The space complexity of the algorithm is O(N). 

Proof: Each node at string-depth > w is processed exactly once. At an internal node, the 

duplicate elimination process reduces the total size of Isets of all its children by at most a 

factor of (|S| + 1). This is because a string is present in at most one Iset of each child node 

and the number of children is bounded by (|£| + 1). The total size of all the Isets of all the 
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children after duplicate elimination is bounded by the number of pairs generated at the node. 

Taken together, this implies that the cost of the elimination process is bounded by a constant 

multiple of the number of pairs generated at the node (assuming |E| is a constant). 

The space complexity of the GST data structure is O(N). The space required by Isets 

is proportional to the total number of Iset entries to be stored at all the leaf nodes, which is 

O(N). This is because Isets at internal nodes are constructed from Isets of their children and 

so do not require additional space. • 

Asymptotically, the run-time is likely to be dominated by the time spent in computing 

alignments, a fact that is corroborated by our experiments on large collections of genomic 

fragments and ESTs (see Section 4.4). The alignment computation run-time can be reduced 

by using the maximal match information that caused a pair to be generated to "anchor" its 

alignment as shown in Figure 4.7. By anchoring, it is only required to compute alignment 

over the two flanking extensions, thereby saving the alignment run-time. Further savings can 

be achieved by extending this idea to include multiple maximal matches as part of the same 

anchor, and in addition computing alignment over a band of diagonals [Fickett (1984)] within 

each area of the table not covered by the anchored maximal matches. Anchoring may, however, 

produce a sub-optimal alignment, as it is possible that none of the optimal alignments contains 

an anchored maximal match. 

In practice, partial clustering information may be available through alternative means for a 

subset of input sequences prior to clustering. For example, it may be known that two sequences 

were derived from ends of the same clone. Such "mate" information can be incorporated into 

the clustering algorithm by initializing the clusters such that all mates are already clustered. 

4.2.2.3 Space requirement 

While the space complexity is O(N), the constant of proportionality is that of what is 

required to store the GST and the Isets. Since there are at most N leaf nodes in the GST, the 

total number of nodes is limited to 2 x N — 1. Because the above algorithm does a bottom-up 

traversal of the tree, in which a parent is visited only after all its children are visited, the tree 
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(a) (b) 

Figure 4.7 (a) Dynamic programming table showing the computation of 
an alignment between s and s' anchored on a maximal match 
a. (b) Overlap patterns resulting from suffix-prefix alignment 
computation and their corresponding paths in the table. 

can be implemented as follows: The nodes are stored in an array in the depth-first traversal 

order. Each node in the tree stores its string-depth, a pointer to its Isets and a pointer to the 

rightmost leaf in its subtree. A leaf node's pointer points to itself. Given an internal node, 

all its children can be accessed as follows: The node immediately next to it in the array is its 

leftmost child. Its right sibling can be obtained by tracing the array entry next to its rightmost 

pointer entry. If a node's rightmost pointer points to the same as its parent's, then it is the 

rightmost child of its parent. The Isets need N entries, one for each suffix in the input. An 

additional array of at most 2 x N — 1 entries is required to store the node identifiers in sorted 

order of their string-depths. 

Our implementation meeting the above storage requirements has a worst case constant of 

«40 bytes for every input character. Because DNA sequences are double stranded, a sequence 

should be considered both in its forward and reverse complemented form for overlaps. This 

doubles the constant to %80 bytes for every input base. As an example, on a set of whole 

genome shotgun sequences that are extracted with an 8x coverage over 1 M bp long genomic 

stretch (i.e., for an input size of 8 megabases), this implementation requires 640 MB in the 
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Figure 4.8 Organization of the PaCE software. 

worst case. In comparison, this is expected to consume 1 GB in implementations of previously 

developed assemblers [Pop et al. (2002)]. 

4.3 A Space and Time Efficient Parallel Clustering Algorithm 

In this section, we describe our parallel algorithm, PaCE, for clustering DNA sequences. 

The algorithm has two main phases: (i) a preprocessing phase to construct a distributed 

representation of the GST on the input sequences, and (ii) a clustering phase to generate 

promising pairs, detect overlaps and perform clustering in parallel. The organization of the 

PaCE software and the interactions among its components are depicted in Figure 4.8. The 

design of the parallel algorithm follows a single master-multiple workers paradigm. The GST 

construction involves only the worker processors. 

4.3.1 Parallel Generalized Suffix Tree Construction 

Serial construction of suffix trees is a well-studied problem with many linear-time con

struction algorithms [Gusfield (1997a)]. There are algorithms for constructing suffix trees in 

parallel under CREW/CRCW PRAM models of computing [Apostolico et al. (1988); Hari-

haran (1997)]. However, due to the unrealistic assumptions underlying the PRAM model, a 

direct implementation of these algorithms is not practically useful. We developed the following 

practically efficient algorithm, suited to exploit the distributed memory machine model. Our 

algorithm constructs a distributed representation of GST in parallel over the set S of all input 
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sequences and their reverse complements. Recall that the sum of lengths all sequences in S 

is denoted by N, and the average length of an input sequence is denoted by I. Let p denote 

the number of worker processors. Also, recall that the cutoff length for maximal matches in 

promising pairs is denoted by w. 

In the first step, given an integer parameter fc, all suffixes are sorted based on their k—length 

prefixes. The value of k is chosen large enough to result in % ^ suffixes per processor after 

sorting. Also, k < w, to suit purpose of the GST, which is identifying maximal matches of 

length at least w. Empirically, a value of 11 was found appropriate for genomic data and many 

EST data, for the range of processors tested (up to 1,024 processors). Sorting is achieved 

as follows: The set S is initially partitioned such that each processor gets % —• nucleotides. 

Through a linear scan, each processor partitions the suffixes of the local sequences into 

buckets based on their first k characters. The suffixes are then globally redistributed such that 

those belonging to the same bucket are in the same processor, and the number of suffixes per 

N  processor is % —. 

Because the buckets correspond to the set of suffixes sorted based on their fc-length prefixes, 

building one subtree for each bucket would construct the GST without the top portion with 

path-label length < k. We perform a depth-first construction of each subtree by partitioning 

the suffixes in its bucket into E sub-buckets based on their (k + l)th character, and recursively 

subdividing each sub-bucket similarly until all suffixes separate or their lengths exhausted. 

At worst-case, this procedure visits all suffixes to their full lengths, implying a run-time of 

In the above approach, not all sequences that have suffixes in a local bucket may be available 

in a processor's local memory before construction of the corresponding subtree. This is because 

the initial sorting based on length prefixes may assign suffixes of sequences in different 

processors to local buckets. The main challenge is therefore to ensure availability of all required 

sequences needed to construct the local subtrees. Storing all sequences with suffixes in all local 

buckets requires min{^~L,N} space in the worst case, which is not a viable solution. Our first 

solution was to construct one subtree after another, such that before constructing each subtree, 
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all sequences required for its construction are read from disk. Given that the disk latencies are 

in the order of milliseconds (in the absence of a parallel I/O) as opposed to microseconds in fast 

communication networks, a communication-based alternative is likely to be more practically 

efficient. For this reason, we implemented the following communication-based solution for 

subtree construction. 

Each processor partitions its buckets into variable-sized batches, such that the sequences 

required to construct all buckets in each batch would occupy O(y) space. Before constructing 

a batch, all sequences needed for its construction are fetched through two collective commu

nication steps — the first to request the processors that have the required sequences, and the 

second to service the request. The processor that has a given sequence is determined in con

stant time by recalling the initial distribution of S. A processor may exhaust all its batches, in 

which case it continues to participate in the remaining communication rounds to serve requests 

from other processors. 

In the above communication based solution, each processor receives 0(y) characters from 

all other processors per communication step. However, the size of the buffer used to send 

sequences to other processors is not bound by O(y). This is because requests from different 

processors may intersect, in the worst case over all of 0(y ) local data; for which the likelihood 

of happening increases with the number of processors. We resolved this issue by implementing 

a customized Alltoallv, which ensures 0(™) size for the buffers by doing p— 1 sends and receives 

instead of one collective communication, 

4.3.2 Detecting Overlaps and Clustering In Parallel 

Once a distributed representation of GST is constructed, the next phase detects overlaps 

and performs clustering in parallel. We designed this clustering phase as a master worker 

paradigm with one master and p worker processors. In addition to concerns typical to a single 

master-multiple workers setup such as keeping the master processor available and all worker 

processors busy, designing our master-worker model presents other unique challenges. 

In a traditional master-worker model, the master processor generates and distributes work, 
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while the worker processors process the work. This traditional model, however, is not appro

priate for our clustering algorithm because the GST required to generate promising pairs (i.e., 

generate "work" ) is stored in a distributed fashion among the worker processors. Therefore, we 

designed a variant of this traditional model in which the master processor serves as a necessary 

intermediary only to maintain clusters and distribute work in a load balanced fashion; while 

the worker processors in addition to processing the work (by aligning pairs) also generate work 

(by generating pairs). Care must be taken that the rate of work generation is neither too fast 

to result in a memory overflow (because pairs have to be stored in the master processor's local 

memory until they are allocated for alignment computation) nor too slow to result in unnec

essary processor wait times. Moreover, as not all generated pairs are necessarily selected for 

alignment, it is necessary to regulate the rate of pair generation in order to maintain a steady 

rate in alignment computation. Another cause of concern is that workers will start to run out 

of pairs to generate from their portion of the GST dynamically as execution progresses. Hence

forth, we call such workers passive while those that still have pairs to generate as active. In 

the interest of maintaining parallel efficiency, it is necessary to keep passive workers busy com

puting alignments. Also, allocating pending alignment computations to these passive workers 

ahead of any active worker can help balance the work generated vs. processed dynamically. 

With the above goals in mind, we designed an iterative solution with responsibilities as 

shown in Figure 4.9. The master and worker processors interact iteratively until all promis

ing pairs are generated and all alignments identified as necessary have been computed. The 

master processor is responsible for maintaining the clusters, selecting and allocating pairs for 

alignment computation, and load balancing. Each worker processor is responsible for generat

ing promising pairs from its local GST portion in decreasing order of maximal match length, 

computing alignments for pairs allocated by the master processor, and report the alignment 

results to the master processor. To reduce communication setup costs, the worker processors 

send pairs in batches instead of one pair at a time. Similarly, the master processor also allocates 

pairs for alignment computation and collects their results in batches. 

The master and workers store and maintain the following information. 
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[AW] Allocate alignment work 
Demand new pairs 

[NP] Send new pairs 
[AE] Send alignment results 

• Generate promising pairs 

• Compute pairwise alignments 

Manage clusters 

Load balancing 

Information Stored: 

Clusters 

Information Stored: 

/\ GST, 

New JPair sJ3uf Idle-Workers 

Pending-W orkJBuf 

Master 
Processor 

A Worker 
Processor 

Master Network Worker p t  

Figure 4.9 A single master-multiple workers design for detecting overlaps 
and clustering in parallel, with responsibilities designated as 
shown. Arrows indicate the direction of communication. 

Information at the Master Processor: 

• Clusters: the set of all sequence clusters maintained and updated dynamically. This is 

implemented using the union find data structure; 

• Pending JVorkJBuf : a fixed size buffer to temporarily store the pairs selected but not 

yet allocated to any worker for alignment computation. This is implemented as a circular 

queue; and 

• Idle-Workers-, a list of all passive workers that do not have any alignment work allocated 

to them. This is implemented as a queue. 

Information at a Worker Processor pf. 

GSTi: the local portion of GST; and 
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» New-Pairs-Buf: a fixed size buffer to temporarily store newly generated promising 

pairs that have not yet been sent to the master processor. This is implemented as a 

circular queue. 

The following messages are exchanged between the master and an arbitrary worker proces

sor pi at a given iteration: 

• AW: a new batch of alignment work allocated by master to #. The number of pairs 

sent in each batch is user-specified and is fixed — we call this number the batch size and 

denote it by b. AW is implemented as an array; 

• r: the number of promising pairs that the master requests p, to send during its next 

communication with the master. This number is variable and is determined dynamically 

by the master as explained later; 

• NP: a batch of new promising pairs sent by p t  to the master processor. This is 

implemented as an array; 

• AR: a list of alignment results sent by pi to the master processor. The results are for 

the alignments computed over the most recent batch of pairs allocated by the master to 

Pi. AR is also implemented as an array; 

Figures 4.10 and 4.11 detail the algorithms for the master and a worker processor, respec

tively. 

In each iteration, the master processor polls for messages from any of the workers. When 

a message arrives from a worker p,, the master updates Clusters using the alignment results 

that are satisfactory, scans the batch of newly generated pairs from p«, and adds only those 

pairs for which alignments are necessary to Pending-Work J3uf. It then repeatedly extracts 

batches of size b from Pending JVork-Buf, dispatching each batch to an idle worker. If all 

workers become idle, then it signals the end of clustering. If no more idle workers remain 

and if there is more work left in the P ending JV or k J3u /, then the next batch of b pairs are 

allocated to pj. In the same message, the master also piggybacks the number of new pairs, 
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Algorithm 5 Algorithm for Master Processor 

1. Clusters 4 -  Initialize such that each sequence is in a cluster of its own 

Pactive 4 P 

Idle-Workers <— 0 
2. REPEAT 

Blocking Receive until message from an arbitrary processor pi 
NP <- new promising pairs 
AR <- alignment results 
IF NP = 0 AND Pi is active THEN 

Mark pi as passive 
Decrement pactive 

Update Clusters based on AR 
NP' <— Identify pairs in NP that need alignment computation 
r <- mi»)® x ^ x 0, 
Add NP' into Pending-WorkJBuf 
FOR EACH pj € Idle-Workers DO 

AR Dequeue min{b, |Pendingork-Buf |} pairs 
IF AR / 0 THEN 

Send AR to pj 
Remove p3 from Idle-Workers 

AR <r- Dequeue min{b, \Pending-Work-Buf\} pairs 
IF AR 0 OR r > 0 THEN 

Send (AR,r) to pi 
ELSE 

Add pi into Idle-Workers 
UNTIL all workers become idle 

3. Send termination signal to all workers 
4. Output Clusters 

Figure 4.10 The algorithm for the master processor. Bold font indicates 
a communication step. 
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Algorithm 6 Algorithm for a Worker Processor pi 

1. AW <— Generate next b promising pairs from GSTi 
2. AR 4- Compute alignments on AW 
3. AW 4— Generate next b promising pairs from GSTZ 

4. NP <— Generate next b promising pairs from GSTi 
5. r <— b 
6. REPEAT 

Send NP and AR to master 
AR <- Compute alignments on AW 
(AW,r)t- Non-blocking Receive from master 
REPEAT 

Generate r pairs from GSTi and add to New-PairsJ3uf 
UNTIL message arrives from master OR New-PairsJBuf is full 
IF no message from master THEN 

(AW,r)<r- Blocking Receive until master sends a message 
NP •<— Extract r pairs, first from NewJPairs^Buf and then from GSTi if necessary 

UNTIL no more promising pairs to generate from GSTi 
7. REPEAT 

AW <— Blocking Receive from master 
AR <— Compute alignments on AW 
Send AR to master 

UNTIL master sends termination signal 

Figure 4.11 The algorithm for each worker processor. Bold font indicates 
a communication step. 

r, that it expects to receive from p t  in its next communication; r is given by: min{ j^p)| x 

r-2— x b, \Pendm9-Work-Buf\ | where pactive denotes the number of active processors. The main 
Pactive Pactive 

idea is to request as many pairs as necessary to expect that b of them would be selected for 

alignment computation. In other words, this load balancing strategy aims at regulating the 

inflow of work so as to keep the outflow roughly constant. 

In each iteration, a worker processor generates as many new promising pairs as requested by 

the master processor and sends them in a message along with the results of the latest alignments 

it computed. While waiting for the master to reply, the worker computes alignments on the 

batch of pairs allocated by the master during the previous iteration. This is effective in masking 

the communication wait time with computation. If alignment computation is completed before 
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the master replies, then the workers processor resumes from its earlier state of pair generation 

and generates fresh batches of promising pairs from its local GST portion until either a master's 

reply arrives or its temporary store NewJPairs-Buf is full. If a worker becomes passive, it 

keeps itself busy by computing alignments that the master allocated. 

4.3.3 Software Availability 

The PaCE software is implemented in C, and requires a multiprocessor cluster with support 

for MPI (e.g., MPICH [Gropp et al. (1996)]). The software is copyrighted by Iowa State 

University, and is available free for academic use. 

4.4 Results and Applications 

In this section, we present two different applications of our PaCE clustering method — 

EST clustering and genome assembly. 

4.4.1 EST Clustering 

4.4.1.1 Quality Assessment 

We validated the accuracy of PaCE clustering in the context of clustering ESTs using a 

benchmark data set consisting of 168,2000 Arabidopsis thaliana ESTs [Zhu et al. (2003)]. It 

was possible to create this benchmark data because the genome of Arabidopsis has already 

been sequenced. The benchmark data was created by spliced alignment of the ESTs to their 

cognate locations in the Arabidopsis genome, with subsequent clustering based on genome 

location: ESTs that overlap in at least 40 bp to same or proximate genomic locations were 

clustered. By this exercise, out of the 168,200 ESTs, 146,527 ESTs mapped to unique locations, 

while the remaining 21,673 ESTs mapped to more than one cognate location. Each EST 

aligning to more than one genome location was mapped to the cluster corresponding to the 

location that gave the maximum alignment score with the EST. This procedure of generating 

the benchmark clusters captures various interesting cases: (i) ESTs originating from the same 
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gene axe clustered irrespective of their mRNA transcript source; and (ii) ESTs originating from 

highly similar genes are separated. Chimeric ESTs were excluded from the benchmark. 

Our procedure was to cluster the benchmark EST data with PaCE, and then run the CAPS 

assembly program [Huang and Madan (1999)] on each resulting cluster, so that consensus 

sequences (contig) representing the putative source mRNA transcripts can be generated for 

the clusters output by PaCE. In this process, it is possible that a given cluster output by 

PaCE gives rise to multiple contigs — this could happen because of either of the two following 

reasons: (i) ESTs from alternatively spliced variants of the same gene are clustered together by 

PaCE, or (ii) ESTs from similar/related but different genes are clustered together by PaCE. It 

is, however, guaranteed that no EST is assembled into more than one contig. Once assembled, 

the ESTs are grouped based on their corresponding contigs. The set of clusters resulting from 

this grouping is henceforth referred to as the "PaCE clusters". 

The platform for our PaCE experiments was a 30 node IBM xSeries machine, with each 

node containing two 1.26 GHz Intel Pentium III processors and 2.25 GB RAM. The nodes 

are interconnected by Myrinet. After running PaCE in parallel, the task of running the serial 

CAP3 program on each individual output cluster was trivially parallelized by distributed the 

clusters across processors initially and running multiple instances of CAP3 on each local set of 

clusters. 

We compared the PaCE clusters against the benchmark clusters. Given that CAP3 is also 

one of the popular programs used for clustering ESTs [Liang et al. (2000)], we ran CAP3 

directly on the 168,200 ESTs and compared the resulting CAP3 clusters against both PaCE 

and benchmark clusters. Running CAPS directly on 168,200 ESTs was enabled by running it 

on a computer with 3.25 GB RAM. 

To assess quality as a function of data size, two subsets of clusters were extracted from the 

benchmark clusters, such that the number of ESTs represented in the sets were «50,000 and 

«100,000, respectively. The ESTs were input to the programs in no particular order. 

A set of clusters is compared against the benchmark as follows: Let "test clusters" denote 

either the PaCE clusters or CAP3 clusters. For both the test clusters and benchmark clusters, 
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u Test /- Benchmark 

( FP TP ) ™ 

TN 

Figure 4.12 Illustration of quality validation measurements True Positives 
(TP), True Negatives (TN), False Positives (FP) and False 
Negatives (FN). 'U' refers to the set of all possible pairs of the 
input ESTs. 

generate pairs of ESTs such that both ESTs in a pair are from the same cluster. Based on 

the number of such pairs, the following measurements are defined; see Figure 4.12 for an 

illustration. A pair generated from the test clustering is called a true positive ( TP) if it is also 

paired in the benchmark clustering; it is called false positive (FP) otherwise. A pair absent 

from the test clustering is called a true negative ( TN) if it is also absent from the benchmark 

clustering; it is called false negative (FN) otherwise. Based on these measurements, another 

set of quality measures are defined: Overlap quality is the ratio of the number of TPs to 

the total number of unique pairs extracted from the clusters of both results, and is given by 

OQ = Tp+FN+Fp', OQ is also known as Jaccard index [Jain and Dubes (1988)]. Specificity is 

the fraction of correctly predicted pairs with respect to the total number of pairs predicted by 

the test clustering, and is given by SP = Tp+Fp- Sensitivity is the fraction of correct pairs 

(from benchmark) predicted in the test clustering, and is given by SE = Tp+FN • Overall 

accuracy can be given by the correlation coefficient, which is given by: 

T P  x T N  -  F P  x F N  
— 

N / ( T P  +  F P )  x ( T N  +  F N )  x (TP + FN) x ( T N  +  F P )  '  

Ideally, the test clusters should exactly match benchmark clusters, i.e., OQ=SP=SE=CC=100%. 

The results of assessing the quality of our software and CAP3 using the benchmark data 

sets are shown in Table 4.1. Observing the measurements OQ, SP, SE and CC, our results 

are very close to the results of CAP3, with CAP3 showing slightly better results than PaCE. 

For either programs, the sensitivity is lower than the specificity and this is attributable to 
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n 50,012 100,003 168,200 
PaCE CAPS PaCE CAPS PaCE CAPS 

OQ 86.87 89.32 84.84 89.13 88.87 90.35 
SP 98.67 98.13 96.2 95.62 96.5 96.15 
SE 87.91 90.87 87.78 92.92 91.83 93.74 
CC 93.12 94.42 91.89 94.26 94.13 94.94 

Table 4.1 Quality assessment of PaCE and CAPS clusters using clusters 
generated from different portions of the benchmark data set. 

the conservative nature of clustering criteria used. The results are based on the choice of the 

quality threshold parameters of PaCE and CAPS, experimentally found to optimize specificity 

and sensitivity simultaneously. For the PaCE run, we used the following alignment scoring 

scheme: match = 2, mismatch = —2, opening gap penalty = 6, gap continuation penalty = 1. 

Also, the cutoff length for maximal match length (w) was set to 40 bp, and an alignment was 

deemed significant if its score is within 75% of a perfect matching score. CAPS was also run 

under similar parameter settings for overlap percentage identity. 

To enable a direct comparison with CAPS, we compared the PaCE clustering directly 

against CAPS clustering, treating CAPS as a benchmark clustering and the PaCE clustering 

as the test clustering, for the purpose of analysis. The measurements obtained for the 168,200 

data collection are as follows: OQ—95.25%, SP—98.76%, SE=96.4% and CC—97.58%. 

Quality Assessment using Clone Mates Information: 

We also evaluated the effect of clone mate information on the quality of PaCE clustering. 

This was achieved as follows: ESTs are grouped as pairs based on their source cDNA clones 

[Seki et al. (2002)]. Following this, the benchmark clusters are updated by merging the clus

ters that are linked by at least one clone mate pair. Note that it might happen that clone 

information is not available for some ESTs in the input data, and/or there are ESTs that were 

originally derived from non-overlapping cDNA transcripts of the same gene. In such cases, the 

benchmark clustering is based only on spliced alignments. For the 168,200 ESTs, 16,992 pairs 

of ESTs were linked with clone identifiers. 
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n 50,012 100,003 168,200 
w/o CM w/ CM w/o CM w/ CM w/o CM w/ CM 

OQ 84.29 88.06 81.94 87.46 85.89 88.74 
SP 98.71 97.75 96.28 94.98 96.43 94.94 
SE 85.23 89.88 84.62 91.7 88.71 93.14 
CC 91.21 93.72 90.26 93.32 92.49 94.04 

Table 4.2 Quality assessment of PaCE clusters with and without clone 
mates (CM) information, against the Arabidopsis benchmark 
clusters. 

PaCE clustering allows for input with clone mate identifiers. Using the clone mate infor

mation, updated PaCE clusters were obtained in the following manner for the different subsets 

of the benchmark data: cluster the benchmark data using PaCE with the added input of clone 

mates; run CAP3 on each resulting cluster and group ESTs based on contigs. Clone mates 

information was also passed as input to CAP3 so that the final clustering is with the clone 

mates information. The results were compared against the corresponding benchmark clusters. 

To measure the improvement in quality of clustering, we also compared the PaCE clusters 

obtained without clone mates information against the new benchmark clusters. 

The results for 168,2000 ESTs and its subsets are shown in Table 4.2. It can be observed 

that on the 168,200 data set, the clone mate information was instrumental in improving the 

overall CC from 92.49% to 94.04%. 

4.4.1.2 Performance Evaluation 

We first studied the performance of the PaCE software on the same 168,200 Arabidopsis 

EST collection used in our quality assessment experiments. The total run-times as a function of 

the number of processors for various data sets are shown in Figure 4.13a. For these experiments, 

we used a batch size of 60. As can be observed, the run-times show near perfect scaling with 

the number of processors. We are also interested in the growth of run-time as a function of the 

data size for a fixed number of processors. While the memory required scales linearly with the 

problem size, the total run-time cannot be analytically determined and depends on the input 
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Figure 4.13 Parallel scaling of PaCE clustering. 

data set. These run-times for various data set sizes are shown in Figure 4.13b. 

A subdivision of the run-times into the time spent on various components of the software 

for 20,000 ESTs is shown in Table 4.3. Asymptotically, the largest contributor to the total 

run-time is the time spent in performing pairwise alignments during the clustering phase. The 

GST construction phase scales linearly (treating the average length of an EST . to be a large 

constant). The clustering phase is expected to take quadratic run-time. In our approach, 

the time spent in pairwise alignments is significantly reduced because our algorithm (i) avoids 

unnecessary duplicates in generating promising pairs and (ii) processes high-quality promising 

pairs first which has the effect of eliminating other promising pairs from further consideration. 

Because of these reasons, for smaller data sizes, the alignment phase runs faster than the GST 

construction phase as seen from Table 4.3. 

Figure 4.14a shows the total number of promising pairs generated as a function of the data 

size. Observe that the alignment work is done for only a small portion of the pairs generated 

(for e.g., 22% for the 168,200 data set). This illustrates the reduction in work achieved by 

processing the pairs in the decreasing order of maximal common substring length, as opposed 

to processing them in an arbitrary order. Also note that the number of aligned pairs that 

contribute to merging of clusters is linear in n, as at most n — 1 union operations can be 
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p Partitioning Construction Sorting Clustering Total 
of GST Nodes Phase Time 

2 28 715 30 271 1044 
4 13 250 10 102 375 
8 5 110 4 50 119 

16 2 57 2 26 87 
32 1 36 1 15 53 
60 1 27 1 10 39 

Table 4.3 Time (in seconds) spent in various components of parallel EST 
clustering as a function of the number of processors (p) for 20,000 
ESTs. 

performed. Because of the nature of master-slave interactions during the clustering phase, the 

number of pairs that are actually aligned varies slightly as the number of processors changes. 

We found the variation to be insignificant. 

Figure 4.14b shows the number of clusters as a function of the cluster size for 168,200 ESTs. 

About 44% of the clusters formed contain a single EST. A few clusters contain as many as 

several hundred ESTs (e.g., there are 34 clusters with size above 200). This non-uniformity 

in the size distribution in clusters is the primary reason why fragment assembly software has 

large memory and run-time requirements when applied to EST clustering. 

The effect of varying batch size on the run-time of the clustering phase of PaCE is shown 

in Figure 4.15. When the batch size is small, the master and workers exchange messages 

more frequently, thereby making the communication overhead dominant. With a large batch 

size, EST clusters are less frequently updated, causing alignment of more promising pairs than 

necessary. Empirically, we found the optimal batch size for the benchmark data set to be in 

the range of 20—60. Note that this optimal range may vary depending on the size of input, 

the number of processors, and the speed of network interconnect of the underlying parallel 

platform. 

Mouse EST Clustering 

For the purpose of demonstrating the capability of large-scale clustering, we also evaluated 
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200 

the performance of PaCE clustering on the largest available mouse EST data in GenBank as 

of April 2006. This data, after cleaning and polyA tail removal, comprised of 3,783,854 ESTs. 

We conducted this large-scale experiment on the IBM BlueGene/L (BG/L) supercomputer 

[Adiga et al. (2002)] at Iowa State University. Each BG/L node contains two 700 MHz IBM 

PowerPC architecture-based processors and a 512 MB RAM. There is no additional node-level 

storage available in the form of any swap space. The nodes are connected through a 3D-torus 

network. Each dual-processor node was used in co-processor mode, i.e., one processor was used 

for computation and the other processor was used for communication. For this reason, we will 

use "nodes" and "processors" synonymously. 

Tables 4.4 and 4.5 show the total and phase-wise run-times respectively, as a function of 

both the input and processor sizes. Both these tables show the range of processors on each 

input up to which the run-time scales linearly, and beyond which the problem size becomes 

too small for the processor size. It can be observed that as many as 512 processors can be used 

efficiently for even an input containing as few as 100,000 ESTs. 

The increase in run-time with input size in Table 4.4 conforms with the asymptotic quadratic 

behavior expected on EST data. Also, observe that the run-time for clustering phase dom-
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Figure 4.15 PaCE run-time as a function of the number of pairs allocated 
at a time for pairwise alignment. 

inates the total run-time for larger input sizes. Figure 4.16 shows the number of promising 

pairs generated by PaCE based on a minimum cutoff maximal match length of 30 bp, as a 

function of the input number of ESTs. As shown in the figure, the number of pairs is expected 

to grow quadratically with the number of input ESTs. Figure 4.16 also shows that alignments 

are computed for only «10-12% of the generated pairs, demonstrating the significant run-time 

savings achieved through the PaCE heuristic techniques. 

We evaluated the effectiveness of the master-worker paradigm of the PaCE algorithm as 

follows: Figure 4.17a shows the average run-time (as a, percentage of the total run-time) spent 

by a worker processor waiting for the master processor without performing any computation. 

As can be expected, this idle time decreases with increase in input size for a given processor 

size. Figure 4.17a shows that the idle time ranges from 7% to 22% on the input tested. We also 

evaluated idle time on the master processor to check its availability to the worker processors. 

Figure 4.17b shows that the master processor is available for at least 80% of the run-time, for 

even a small input size of 100,000 ESTs on as many as 1,024 processors. This suggests that 

the master processor is not a bottleneck even as the number of processors is increased to the 

order of thousands. 

The PaCE software is used by the NSF funded PlantGDB project (http://www.plantgdb.org), 

http://www.plantgdb.org
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Total run-time 

Number 
of ESTs 

Number of processors Number 
of ESTs 32 64 128 256 512 1024 
100,000 80 43 20 11 6 5 
250,000 225 114 50 25 14 11 
500,000 275 146 74 34 25 

1,000,000 281 138 78 46 
2,000,000 421 272 153 
3,783,854 1198 574 

Table 4.4 PaCE clustering run-time (in minutes) on «3.78 million mouse 
ESTs using 1,024 IBM BlueGene/L processors. 

GST construction phase run-time Clustering phase run-time 

Number 
of ESTs 
100,000 
250,000 
500,000 

1,000,000 
2,000,000 

3,783,854 

Number of processors 
32 64 128 256 512 1024 
44 25 11 6 3 2 

110 56 29 15 8 6 
123 63 32 16 12 

135 69 38 22 
174 91 51 

248 158 

Number of processors 
32 64 128 256 512 1024 
36 18 9 5 3 3 

115 58 22 11 6 5 
152 83 42 18 13 

146 69 40 24 
247 181 102 

950 416 

Table 4.5 Phase-wise run-time (in minutes) of PaCE clustering on «3.78 
million mouse ESTs using 1,024 IBM BlueGene/L processors. 

which has EST clusters for «100 plant EST collections. The sizes of these collections range 

from as small as a few thousands to over a million rice ESTs. 

4.4.2 Clustering for Genome Assembly 

Our next application of PaCE was on the problem of genome assembly. The problem 

of genome assembly primarily relies on pairwise overlap information among an input set of 

fragments sequenced from the target genome. Despite technological advances, however, genome 

assembly is still largely treated as a problem of serial computers that result in long run-times 

and exorbitant memory requirements. (See Sections 3.1.2 and 3.2 for more details.) 

As earlier mentioned in Section 3.1.2, a strategy of clustering before performing the as-
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Figure 4.16 Number of promising pairs generated vs. number of pairs 
aligned by PaCE while clustering «3.78 million mouse ESTs. 

sembly has several advantages, if: (i) clustering can break a large problem size into numerous 

independent subproblems for assembling; (ii) clustering requires less memory than assembly 

as otherwise there will be no memory advantage in using clustering prior to assembly, and the 

problem sizes solvable using the clustering based assembly approach cannot be larger than the 

direct assembly approach; and (iii) clustering provides a faster alternative to detect overlaps 

and consumes less run-time — the latter can be expected because it involves lesser work than 

assembling (i.e., its task is only to group the sequences that belong the same contig together, 

without actually assembling the contig). All the above desired properties are met by the PaCE 

clustering method. 

We applied PaCE on maize gene-enriched genomic fragments. Gene-enrichment, as de

scribed in Section 2.2.2.3, is a technique by which gene-rich portions of a genome are selec

tively sampled. Gene-enrichment is ideal for the use of clustering based approach to assembly 

because of the following reason: Because of selectively sampling the gene-rich portions of the 

genome and repeat masking, an initial assembly of gene-enriched fragments generates a large 

number of contigs that correspond to the many sparsely located genomic stretches from which 
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the fragments were originally derived [Emrich et al. (2004)]. Thus, we can expect clustering 

to partition the input fragments into "clusters" corresponding to each of the enriched genie 

regions. These individual regions can be assembled post-clustering using any serial assembler 

of choice [Kalyanaraman et al. (2006b)]. While our PaCE clustering framework supports space 

optimality, run-time efficiency and massive parallelism, the assembly task is trivially paral

lelized by distributing the clusters across multiple processors and running multiple instances 

of a serial assembler in parallel. The space and other limitations of these assemblers will now 

not be a limiting factor because of the relatively small size of each cluster. 

4.4.2.1 Data 

Two gene-enrichment methods, Methyl-Filtrated (MF) [Rabinowicz et al. (1999)] and High-

Cot (HC) [Yuan et al. (2003)], were used to sequence the maize genome, as of April 2005. The 

maize genomic data composed of 3,124,130 fragments with total length over 2.5 billion bp. 

This includes 852,838 MF and HC fragments. Also available are fragments from WGS and 

BAC sequencing. A summary of the entire maize data is provided in the first three columns 

of Table 4.6. 
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Before Preprocessing After Preprocessing 
Fragment Number of Total length Number of Total length 

Type Fragments (in millions) Fragments (in millions) 

MF 411,654 335 349,950 288 
HC 441,184 357 427,276 348 

BAG 1,132,295 964 425,011 307 
WGS 1,138,997 870 405,127 309 
Total 3,124,130 2,526 1,607,364 1,252 

Table 4.6 Maize genomic fragment data types and size statistics: 
Methyl-filtrated (MF), High-Cot (HC), Bacterial Artificial Chro
mosome (BAC) derived, and Whole Genome Shotgun (WGS). 

As with any other assembler, the first step in our framework is to screen the input fragments 

for known repeats and vector sequences. This preprocessing step was designed and performed 

by Emrich et al [Emrich et al. (2004)]. A brief overview of this step is as follows: raw fragments 

obtained from sequencing strategies can be contaminated with foreign DNA elements known 

as vectors, which are removed using the program Lucy [Chou and Holmes (2001)]. In addition, 

a database of known and statistically-defmed repeats was designed, and all fragments were 

screened against it. The matching portions are masked with special symbols such that our 

clustering method can treat them appropriately during overlap detection. The last two columns 

in Table 4.6 show the results of preprocessing the data using our repeat masking and vector 

screening procedures. As expected, preprocessing invalidates a significant number of shotgun 

fragments («60—65%) because of repeats, while most of the fragments resulting from gene-

enrichment strategies are preserved. An efficient masking procedure is important because 

unmasked repeats cause spurious overlaps that cannot be resolved in the absence of paired 

fragments spanning multiple length scales. Furthermore, it provides a computational means 

to preferentially assemble non-repetitive regions of the genome that may be gene-enriched. 

This framework, illustrated in Figure 4.18, is a divide-and-conquer strategy that reduces the 

task of assembling one large set of fragments to the task of first identifying clusters containing 

genomic neighboring fragments and then assembling each cluster individually. 
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Figure 4.18 Illustration of our cluster-then-assemble framework. 

4.4.2.2 Results and Validation 

The results of applying our parallel genome assembly framework on the entire maize data 

is as follows: Cleaning the 3,124,130 fragments downloaded from GenBank took 1 hour by 

trivially parallelizing on 40 processors of an IBM xSeries cluster with 1.1 GHz Pentium III 

processors and 1GB RAM per processor. The PaCE clustering method partitioned the resulting 

1,607,364 fragments (over 1.25 billion bp) in 102 minutes on 1,024 nodes of the BG/L, with 

the GST construction taking only the first 13 minutes. We used CAP3 for assembling the 

fragments in each resulting cluster. This assembly step finished in 8.5 hours on 40 processors 

of the IBM xSeries cluster through trivial parallelization. 

Performance Evaluation of PaCE clustering 

We studied the performance of our PaCE clustering algorithm on varying processor sizes 

ranging from 256 to 1,024. In what follows, we first present the performance results for the 

preprocessing phase, followed by the entire algorithm (including the clustering phases). 

For evaluating the preprocessing phase (GST construction), experiments were conducted 

on two subsets of the maize data, with sizes 250 and 500 million bp that comprised 322,009 and 

649,957 fragments, respectively. Figure 4.19 shows the parallel run-times and their breakdown 

into communication and computation times, all of which show linear scaling with both processor 

and input sizes. 

We report the performance of the entire PaCE clustering algorithm, with its single master-
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Figure 4.19 Parallel run-times for constructing GST on inputs of sizes: 
(a) 250 million, and (b) 500 million bp. 

multiple worker implementation on the IBM BlueGene/L supercomputer. The results are 

shown in Figure 4.20. The results show a better scaling for the larger (500 million) input 

than the smaller (250 million) input. Upon increasing the number of processors from 256 to 

1,024, we observe relative speedups of 2.6 for the 250 million input and 3.1 for the 500 million 

input. Further investigation revealed that the percentage average idle time for the processors 

increased from 16% on 256 processors to 26% on 1,024 processors on the 250 million input, and 

from 9% to 16% for the 500 million input — indicating that more processors can be deployed 

while maintaining efficiency if the problem size is larger. Note that a full sequencing project 

will generate over 22 billion bp (30 million fragments each about 750 bp), on which tens of 

thousands of processors can be utilized with our scheme. 

Figure 4.20b shows the number of promising pairs generated as a function of the input size. 

This figure reinforces the effectiveness of our promising pair, clustering and pair generation 

heuristics in significantly reducing the number of alignments computed. For the entire maize 

data, which has 1,607,364 fragments of total size 1.252 billion bp, only about 40% of the pairs 

generated are aligned. However, less than 1% of the pairs aligned contributed to merging of 

clusters, indicating the presence of numerous medium-sized («100) repetitive elements that 
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survived initial screening procedures. Growth in the number of promising pairs is a direct 

reflection of the expected worst-case quadratic growth in the maize data. The number of 

promising pairs generated and the relative savings in the alignment work are highly data 

sensitive. For example, recall that only 22% of generated pairs were aligned on the Arabidopsis 

EST data, as reported in Section 4.4.1.2. 

Biological Validation 

The biological validation of the maize gene-enriched assembly was performed by Emrich 

et al. [Emrich et al. (2004); Fa et al. (2005)]. A summary of the validation results are as 

follows: Our assembly resulted in a total of 163,390 contigs formed by two or more input 

fragments, and 536,377 singletons. Singletons are fragments that do not assemble with any 

other fragment because of sharing no overlap and/or having a high repetitive content that was 

masked during preprocessing. On an average, each cluster assembled into 1.1 contigs; given 

that the CAP3 assembly is performed with a higher stringency, this result indicates the high 

specificity of our clustering method and its usefulness in breaking the large assembly problem 

into disjoint pieces of easily manageable sizes for conventional assemblers. The overall size of 

our contigs is about 268 million bp, which is roughly 10% of the entire maize genome. Upon 

validation by Emrich et al. using independent gene finding techniques, it was confirmed that 
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our contigs span a significant portion (« 96%) of the estimated gene space. The results of 

our assembly can be graphically viewed at http://www.plantgenomics.iastate.edu/maize. For 

further biological details on our on-going effort to assemble the maize genome and a thorough 

discussion of the results on an earlier version of maize data with less than a million fragments, 

see [Fu et al. (2005)]. 

The PaCE clustering framework for gene-enriched genome assembly has allowed us to focus 

on developing parallel methods while benefiting from and not duplicating the painstakingly 

built-in biological expertise of current assemblers. Furthermore, this allows one to generate 

assemblies consistent with what would have been generated by any conventional assembler, 

except that the problem size reach and speed of the assembler is significantly enhanced. 

Our strategy is applicable even for conventional whole genome shotgun assembly. This is 

because gaps invariably occur in sampling, or through repeat masking, or owing to the difficulty 

in sequencing certain regions of the genome. As a result, an initial assembly is expected to 

consist of a large number of contigs that are subsequently scaffolded, followed by targeted 

biological experiments to fill in the gaps. As an example, in the human genome project [Venter 

et al. (2001b)], using whole genome shotgun sequencing resulted in an initial assembly with 

over 221,000 contigs, and the largest contig spanned only under 2 million bp of the genome. 

http://www.plantgenomics.iastate.edu/maize
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CHAPTER 5. DETECTION OF LTR RETROTRANSPOSONS 

In the previous two chapters, we described algorithms and software for performing sequence 

analysis that enable the discovery and understanding of genes, of their related sequences that 

constitute the transcriptome of an organism, and of the entire genome itself. Besides genes, 

there are other substructures within a genome that are subjects of active research topics. 

Identifying these substructures within a genome is the first step towards understanding their 

biological role. Comprising a majority of these genomic patterns are the repeat elements, which 

are, as the name suggests, recurrent genomic sequence patterns. In this chapter, we focus on 

the problem of identifying one of the most abundant classes of genomic repeat elements called 

the LTR retrotransposons. 

Retrotransposons are DNA sequences that reside within cells of a host organism, copy

ing and inserting themselves into the host genome. Studies have revealed their ubiquity in 

many eukaryotic organisms, both plants and animals — they constitute more than 50% of the 

maize genome [Meyers et al. (1998); SanMiguel et al. (1998, 1996)], up to 90% of the wheat 

genome [Flavell (1986)] and at least 45% of the human genome [Lander et al. (2001)]. LTR 

retrotransposons form a special class of retroelements that are typically characterized by two 

long terminal identical repeat sequences, one at the 5' end and the other at the 3' end of the 

inserted retrotransposon; these terminal repeats are referred to as Long Terminal Repeats or 

LTRs. LTR retrotransposons were originally discovered in maize and tobacco [Grandbastien 

et al. (1989); Johns et al. (1985); Varagona et al. (1992)], and are now known to be abundant 

in numerous complex eukaryotic plant (e.g., barley, rice, maize, wheat, etc.) and animal (e.g., 

Drosophila, human, mouse, etc.) genomes. 

Ever since their discovery, LTR retrotransposons have been a topic of great research in
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terest to biologists. Understanding the behavior of these retroelements has been key to many-

significant advances in molecular genetics and functional genomes [Charlesworth et al. (1994); 

Feschotte et al. (2002); Ganko et al. (2003); Miller et al. (1998); SanMiguel et al. (1996)]. 

Because of their mobile nature, retrotransposons play key roles in genomic rearrangements 

[Bennetzen (1996); Feschotte et al. (2002); Kim et al. (1998)] and in the evolution of genes and 

genomes [Ganko et al. (2003); Jordan and McDonald (1999); Vicienta et al. (1999); Wessler 

et al. (1995); White et al. (1994)]. LTR retrotransposons have also been identified to be sources 

of spontaneous and induced mutations and are an important subject in studies relating to mu

tations and genetic variations [Hirochika et al. (1996); Kidwell and Lisch (1997); Varagona 

et al. (1992)]. The transposition mechanism by which LTR retrotransposons copy and relocate 

involves an RNA-intermediary — a copy of the retrotransposon is made into an RNA molecule, 

which is then inserted back as a DNA molecule in another location of the host genome, with 

the aid of an enzyme called reverse transcriptase. This mechanism being highly similar to 

the transposition mechanism of retroviruses such as the HIV has contributed to a continued 

interest in retrotransposon research [Bushman (2003); Coffin et al. (1997)]. The structural 

attributes of LTR retrotransposons provides significant insights into species evolution because 

of the following property: the 5' and 3' LTRs of a retrotransposon are completely identical 

when the retrotransposon inserts itself, but can undergo mutations and become increasingly 

divergent with time [Peterson-Burch et al. (2004); Xiong and Eickbush (1990)]. 

The aforementioned applications and many others have been contributing to a sustained 

research interest in LTR retrotransposons. Also with the continued advancement in sequencing 

technology and with various new large-scale genome sequencing projects of complex eukaryotic 

organisms either currently underway or finished, understanding retrotransposons and their 

biological role in all these genomes has become imperative in furthering research for functional 

and molecular genomics. 

In this research, we propose an efficient algorithm for de novo identification of full-length 

LTR retrotransposons with key emphasis on quality and performance [Kalyanaraman and 

Aluru (2006)]. The main contributions of this research are the following: 
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Figure 5.1 The structure of a full-length LTR retrotransposon. 

• an efficient algorithm for quickly generating high-quality candidates, significantly reduc

ing the search space. The algorithm has a run-time complexity proportional to the input 

size plus the number of candidates (i.e., amortized constant time per candidate); 

• a thorough alignment-based evaluation of candidates using standard dynamic program

ming techniques that guarantees optimality in the alignment score; 

• support for a robust parameter set encompassing both structural constraints and quality 

controls; and 

• an implementation of our algorithm that can run on both serial and parallel computers. 

Preliminary validations of our software indicate better quality results and significantly 

faster run-times when compared to previously developed software. For example, our software 

took 10 minutes on the yeast genome (on a 1.1 GHz Pentium III) and made better predic

tions than LTR..STRUC [McCarthy and McDonald (2003)], which took 210 minutes (on a 1 

GHz Pentium III) despite not computing rigorous alignments. Furthermore, the parallel im

plementation of our algorithm can be used to further reduce the run-time in proportion to the 

number of processors used. Our approach also provides a flexible framework to incorporate 

more LTR-specific improvements with minimal changes to the algorithmic core. 

5.1 Problem Description and Related Work 

The structure of a full-length LTR retrotransposon has been well characterized in literature, 

and is illustrated in Figure 5.1. A full-length LTR retrotransposon is characterized by an 
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internal region containing the retrotransposon that is flanked by two identical repeats (5' and 3' 

Long Terminal Repeats or LTRs), and two identical short repeats 5-6 bp long (5' and 3' Target 

Site Duplications or TSDs) that are a result of a duplication event when the retroelement 

inserts itself into the host genome. The internal retrotransposon region contains the following 

sequences from 5' to 3': Primer Binding Site (PBS) is a region complementary to a tRNA 3' 

terminal sequence used during reverse transcription at a later stage of the retroelement's life 

cycle; the gag region is a gene that codes for a capsid-like protein; the pol region contains genes 

coding for protease, integrase and reverse transcriptase enzymes; the env region contains the 

gene coding for an envelope protein; and the 3' end of the retroelement contains a purine-rich 

sequence called the Poly-Purine Tract (PPT). 

For computational detection, these structural attributes can be modeled as follows: 

LI Similarity Constraint: The 5' and 3' LTRs show a good sequence homology that 

can be demonstrated by a high-scoring global alignment between them. While the LTRs 

are identical when a retroelement inserts into a host genome, they may accumulate 

mutational variations — hence the need for computing an alignment. 

L2 Distance Constraint: The starting positions of the 5' and 3' LTRs are at least Dmin 

bp and at most Drnax bp apart along the genome. The value for Dmin (alternatively, 

Dmax) is given by the sum of minimum (alternatively, maximum) expected lengths of 

an individual LTR and an internal retrotransposon region; biologically reasonable values 

are: Dmin under 1,000 bp, and Drnax in the range [10000,15000] bp. 

L3 LTR motif: LTRs are typically known to start with T G  and end with C A .  

L4 Target Site Duplications: The 5 (or 6) bp immediately left of the 5' LTR are highly 

similar, if not identical, to the 5 (or 6) bp immediately right of the 3' LTR. This repeat 

is called a Target Site Duplication or a TSD because it corresponds to the sequence 

duplicated in the host genome at the time and site of the retrotransposon's insertion. 

L5 Other Signals: The region between a 5' and 3' LTR pair contains a series of spe

cial purpose genes and sequences corresponding to the inserted retrotransposon: primer 
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binding site (PBS), gag, pol, env, and Poly-purine tract (PPT). 

Henceforth, we refer to the above attributes also by their corresponding labels LI through 

L5. 

While the sequence identity expected between 5' and 3' LTRs of a retrotransposon could 

vary across different retroelement families, typically ranging between 70%-100% [Kim et al. 

(1998)], a high identity (>90%) has been observed in most cases [Kim et al. (1998); Promislow 

et al. (1999)]. Because of the strong homology expected between 5' and 3' LTRs, they are also 

expected to contain long exact matches. Thus, identification of exact matching repeats serves 

as a good starting point for LTR retrotransposon detection. Repeat detection is a well studied 

problem and a number of excellent programs are already available. These include RepeatMasker 

[Smit and Green (1999)], REPuter [Kurtz et al. (2001); Kurtz and Schleiermacher (1999)] and 

RECON [Bao and Eddy (2002)]. LTR retrotransposons, on the other hand, are uniquely 

characterized by L2. Therefore, the repeats identified by general purpose repeat identification 

software must be screened to eliminate repeats that do not satisfy L2. For instance, the 

SMaRTFinder program [Morgante et al. (2002)] designed for retrotransposon detection utilizes 

REPuter for repeat detection prior to screening for additional LTR features. The problem with 

this approach is the extra run-time cost incurred in initially generating repeats that are either 

too close or too far apart to be part of any valid LTR retrotransposon — an issue for highly 

repetitive genomes. Even on genomes with abundant LTR retrotransposon content, there could 

be an LTR sequence that is common across numerous members of the same retrotransposon 

family, and generic repeat finding tools will generate all pairs of these LTRs before invalid 

pairs are sieved out. 

A more efficient solution is to build software that is specifically designed for LTR retro

transposon detection, and LTR_STRUC [McCarthy and McDonald (2003)] is the only available 

program that is so designed. It has been successfully used for detection of full-length LTR retro

transposons in Oryza sativa [McCarthy et al. (2002)], Mus musculus [McCarthy and McDonald 

(2004)] and Drosophila melanogaster [Franchini et al. (2004)]. The underlying algorithm, how

ever, is a brute-force approach that results in unnecessarily long run-times, which could be 
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problematic for large genomic sequences. A more efficient algorithm will significantly reduce 

the cost of identifying potential LTR pairs, and the resulting time savings could be utilized to 

improve prediction quality. 

The underlying algorithm in LTRSTRUC can be viewed as a two-step procedure: (i) 

detect all pairs of genomic locations that both satisfy L2 and are starting positions of two 

highly similar substrings (or "seeds") of a particular fixed length w (say 40 bp). Each such pair 

can be considered a "candidate pair" ; (ii) for each candidate pair generated, extend the seeds in 

either direction as long as the alignment continues to satisfy LI. The resulting aligning regions 

are reported as a full-length LTR retrotransposon. Alignment of an extension is computed by 

a simple greedy strategy that aligns longer exact matches before aligning the remainder of the 

region with shorter matches. This method does not guarantee a best possible alignment of the 

predicted LTRs, and therefore has the potential danger of missing some LTR pairs. Ideally, 

an alignment method that computes a combinatorially optimal alignment score is desirable to 

ensure that no such genuine LTR pairs are missed. 

Candidate pairs are generated by the following brute-force approach: Let s denote the 

input genomic sequence of length n. Walk along s and for each position i, 1 < i < n, scan 

all positions j such that (i + Dmin) < j < (i + Dmax). For each (-<, j)-pair, compute the 

percentage identity of the two w—length substrings starting at i and j. If the identity is above 

the similarity threshold (say 70%), then the pair (i, j) is reported as a "candidate pair" and is 

further evaluated for alignment as described above. The algorithm has a worst-case run-time 

complexity of 0(n x (Dmax - Dmin) x ui). In practice, Dmax could be as high as 10,000 -

15,000 and Dmin could be as low as 100. In an attempt to save run-time, the algorithm's 

implementation resorts to a technique of sampling the search interval, i.e., the value of i is 

incremented by some Ai > 1 instead of 1. This would reduce the run-time cost by a factor of 

Ai, but also at the expense of prediction accuracy. Moreover, this algorithm will consider many 

redundant or "duplicate" pairs of locations corresponding to the same matching pair of regions. 

To see this, note that if a 5'-3' LTR pair share a long exact match of length I > u bp, then 

there are (/ — w + 1) pairs of cv—length identical substrings and the algorithm will generate all 
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these pairs of locations even though they correspond to the same longer exact match. Ideally, 

generation of such "duplicate" pairs should be completely avoided in the interest of run-time. 

Also note that the run-time complexity is independent of the repetitive nature of the genome, 

i.e., while at long stretches of the genome that have no LTRs, this algorithm would search for 

an entire (Dmax - Dm,n)-length interval only to result in more wasted effort. 

In a pilot study on a Windows machine with 1 GHz Pentium III processor conducted by 

one of our colleagues [Gai (2005)], LTRSTRUC took 3.5 hours on the entire yeast genome 

(over 12 Mbp) and over 15 hours on chromosome 1 of Arabidopsis thaliana genome (over 30 

M bp). These high run-times are likely to be a major limiting factor in the applicability of 

the LTR_STRUC software on larger genomes such as the human, maize, etc., mainly because 

a biologist would like to run a de novo prediction tool such as LTRSTRUC multiple times 

under different parameter settings before arriving at a high-quality repository of predictions. 

5.2 Notation 

Let s denote the input DNA sequence comprising of n nucleotides. For computational 

purposes, we view s as a string of n characters in alphabet 2 = {A,C,G,T,N}, where 'JV' 

may denote either a low-quality or masked base in the input sequence. Let s[i] denote the 

character at position i in s (1 < i < n). Let s[i..j] denote the substring s['<].s[z + 1]... s[j}. Let 

left(i) = s[z — 1], if i > 1, and 'JV' otherwise; similarly, let right(i) = s[i + 1], if i < n, and 'JV' 

otherwise. Two identical substrings s[ii~(ii + k)} = s[%2-(*2 + &)] are said to be left-maximal 

(respectively right-maximat) if and only if left(i\) leftfa) (respectively right(i\ + k) ^ 

right(i2 + k)). They are said to be a maximal matching pair if they are both right- and left-

maximal. We will assume that aligning 'JV' with any other character should be treated as a 

mismatch. 

5.3 Our Approach 

The main idea of our approach is to have an efficient linear time preprocessing of the 

entire input sequence, followed by an algorithm that provides a direct mechanism (as opposed 
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to a searching mechanism) for generation of "candidate pairs". Our definition of "candidate 

pairs" is based on maximal matches subject to LTR retrotransposon length constraints. Each 

candidate pair is then subjected to a rigorous alignment test that guarantees an alignment 

with the combinatorially best score for testing against LI. 

The advantage of generating candidate pairs based on maximal matches instead of fixed-

length matches is that it provides a direct means of detecting a "long" exact match rather than 

as a chain of smaller fixed-length exact matches. While the detection of maximal matches is well 

studied in literature using the suffix tree data structure [Gusfield (1997b)], our pair generation 

algorithm follows a related strategy using the suffix array and Longest Common Prefix (LCP) 

array [Gusfield (1997b)] data structures, taking into account L2. The suffix array of a string 

is the lexicographically sorted array of all its suffixes, and the following property is key for our 

pair generation algorithm: any two identical substrings starting at a pair of positions can be 

represented as a common prefix shared by the two suffixes starting at these positions. 

5.3.1 The Sequential Algorithm 

Let Lmin (Lmax) denote the minimum (maximum) allowed length of an LTR (as shown in 

Figure 5.1). Let Lex denote a length such that any 5'-3' pair of LTRs will share at least one 

exact match of that length. This user-specified parameter can be analytically estimated as 

follows: if if), the rate of mutation (as a fraction) in the host genome is known, a reasonable 

is 

Definition 3 Candidate Pair: A pair of genomic positions (u, 22) fl < ii, 12 < n) is defined 

to be a candidate pair if and only if it satisfies the following properties: 

1. the positions satisfy L2, i.e., (n + Dmm) < i2 < {i\ + Dmax). 

S. the substrings a[:i .. (*% + Lex — 1)] and s[^2 -- {h + Lex — 1)] are left-maximal. 

Note that there is a one-to-one correspondence between the set of maximal matching pairs of 

minimum length Lex and left-maximal pairs of length Lex. Our algorithm comprises of three 

phases: a preprocessing phase, a candidate pair generation phase, and an alignment phase. 
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SA: 

LCP: 

bucket Bk — 

1  4  - 1 4  r k  r k  + 1  n 

V t k  < i < r k ,  L C P [ i \  >  L e x  

LCP[l k  -  1 ]  <  L e x ,  L C P [ r k  +  1  } < L e  

Figure 5.2 Illustration of the process of creating a bucket during pre
processing. 

5.3.1.1 Preprocessing 

The goal of preprocessing is to "arrange" the positions {1,2,..., n} in s in a manner that 

allows quick generation of candidate pairs as per Definition 3. This is achieved in two steps — 

(i) partition the positions based on their Lea;-length substrings and then internally subpartition 

them based on the character preceding each position so that any two left-maximal substrings 

are in different subsets, and (ii) sort the positions within each subset so that the check for L2 

can be quickly performed. The algorithm is as follows. 

In the first step, construct a suffix array (denoted by S A )  data structure [Manber and Myers 

(1993)] on s in linear time [Karkkanen and Sander (2003); Kim et al. (2003); Ko and Aluru 

(2003)] and also the corresponding longest common prefix array (denoted by LCP) [Kasai 

e t  a l .  ( 2 0 0 1 ) ] .  A s  a  r e s u l t ,  S A [ i ]  i s  t h e  i t h  l e x i c o g r a p h i c a l l y  s m a l l e s t  s u f f i x  i n  s  ( V I  <  i  <  n ) ,  

and LCP[i] is the length of the longest common prefix between suffixes SA[i] and SA[i + 1] 

(VI < i < n — 1). Next, a set B = {l?i, B2l..., Brn} of m buckets is generated such that 

Vi, j G Bk, VI < k < m, s[z .. (i + Lex — 1)] = s[j .. (j + Lex — 1)]. This is achieved by linearly 

scanning the LCP[l..n — 1] array and recording all maximal intervals in which the LCP values 

are all greater than or equal to Lex. The value of m is therefore the number of such maximal 

intervals. For each maximal interval the set of all suffix entries that it covers in the array 

SA[l..n] is then assigned to a unique bucket in B. See Figure 5.2 for an illustration. Because 

every LCP entry covers two consecutive suffix entries in SA, each resulting bucket contains at 
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Algorithm 7 Candidate Pair Generation 

Input: Bucket 
Li: FOR EACH cx G £ DO 

L2: FOR EACH i G Lsetk
ci DO 

L3: FOR EACH C2 E S and (c% ^ c2 or c\—c2 — lN') DO 
Si: bi <r- min{j\j G Lset*,Dmin < (j - i) < Dmax} 
S2'- e, 4- G Lset*2,Dmin < (j - i) < Dmax} 
S3: Generate pairs (t, j), Vj G Lset*2,6, < j < ei 

Figure 5.3 Algorithm to generate candidate pairs from a given bucket B^. 

least two suffix entries, i.e., 0 < m < [|J. Choosing maximal intervals in the LCP array with 

values > Lex ensures that VI < & < m, Vz G Bk, all substrings s[z..(z + Lea; — 1)] are identical. 

The next step is to sort each bucket in ascending order of the position numbers. This 

is done once for all buckets through a stable integer sort. Each bucket Bk is then further 

partitioned into |E| ordered sets called Lsets: Vc G S, Lsetç = {i | left(i) =c,t G %}. It is 

easy to see that one can partition every B^ into these individual Lsets still maintaining the 

internal sorted order within each Lset. Maintaining the sorted order is critical for efficient 

generation of candidate pairs, as will soon become evident. 

5.3.1.2 Candidate Pair Generation 

Once the input sequence is preprocessed, candidate pairs can be generated from within 

each bucket. The algorithm for generating candidate pairs is presented in Figure 5.3, and an 

illustration to help understand the algorithm is provided in Figure 5.4. 

For each bucket B&, all Lsets are scanned in the ascending order of the position number. 

A position i in Lset^ is paired with a position j if and only if j G Lset£2 such that c2 ^ c\ 

or c2 ='iV' (i.e., the substrings s[i..('t + Lex — 1)] and s[j..(j + Lex — 1)] are left-maximal), 

and [i + Dmin) < j < (i + Drnax) (i.e., the pair (i,j) satisfies L2). This guarantees that a 

pair (i, j) is generated only if it is a candidate pair by Definition 3. Enumerating all j (and 

only those j) that should be paired with i is achieved in the following manner. Since each 
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Bucket Bk: Lset\ Lsetk
c Lset% Lset\ Lset% 

=ï (k> > bi) 

A (ei' > ei) 

Figure 5.4 Illustration of the candidate pair generation algorithm. 

Lset is internally sorted by position numbers, the valid entries for j for a given value of i will 

be placed consecutively in Lset*2, defined by a range, say [bi,... , e,]. If i is the first entry of 

the ordered set Lset^v bi can be located in Lset^2 by performing a linear scan until a value 

that is > (i + Dmin) is encountered. Once bi is located, we can continue pairing i with all 

subsequent elements from bi in Lset^2 until (i + Dmax) is exceeded or the Lset is exhausted. 

The last element to be paired is e,. Henceforth, in advancing each i to its next position say %' 

in Lsetit is sufficient to start searching for bti from bi onwards, since bti > bt as i' > i. Even 

better, one can record the location of b^ if it is found before e,, while generating pairs for i, 

and directly start from b# for %'. 

Since the algorithm ensures every entry in each bucket is considered for i, and that for 

each such i all valid entries for j from the same bucket are considered, it can be seen that our 

candidate pair generation does not miss any candidate pair satisfying Definition 3. Moreover, 

since each entry in a bucket is considered for i exactly once it is also easy to see that each 

candidate pair is generated exactly once. 

Lemma 4 Let s[zv-(ii + fc — 1)] and s[i2--(«2 + £; — !)] be two maximal matching substrings, 

for some k > Lex, and (ii + Dmin) < i2 < (ii +Dmax). Then (n,^) is generated exactly once. 

Proof: If s[z'i..(ii +& — !)] and s[i2--(i2 + k — l)} are two maximal matching substrings of length 

> Lex then there is exactly one pair of left-maximal Learlong substrings: s[îi-.(îi + Lex — 1)] 

Sorted 

(ascending) 

order 

X 

bf 

e. 

ev 
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i $ — L/max Lex j 

Figure 5.5 Two alignments are performed for each candidate pair 
si vs. S3 and s% vs. S4. Dotted arrows indicate the directions of 
the alignments, and the two ovals indicate the anchoring match. 

and s[î2-.(î2 +Lex — 1)]. Therefore (n, 22) is a candidate pair by Definition 3 and is generated 

exactly once by the algorithm. • 

5.3.1.3 Run-time Analysis 

For the preprocessing phase, the construction of suffix array [Karkkanen and Sander (2003); 

Kim et al. (2003); Ko and Aluru (2003)] and LCP array [Kasai et al. (2001)] take 0(n) time. 

Generating the set of buckets also takes 0(n) time because the algorithm performs a linear 

scan of the arrays. Sorting each bucket by position numbers and generating all Lsets for all 

buckets are integer sorting operations. The outermost loops, L\ and L2 of Algorithm 5.3, over 

all iterations visit each position in {1,..., n} at most once, although in an arbitrary order. By 

Lemma 4, the cost of Step S3 over all iterations is proportional to the number of candidate 

pairs generated. For steps Si and S%, note that at worst case, locating a particular bi may 

take O(n) if it is the first entry in its Lset. However, the amortized worst case total cost is 

still 0(n) because each entry is considered exactly once for choice of i and at most 2 x |S| 

times for j, implying a run-time cost of Q((2 x |E| + 1) x n) = 0(n) (taking |£| = 5 to be 

a constant). Thus the pair generation algorithm has an optimal run-time, i.e., 0(n) plus the 

number of candidates pairs in s. 
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5.3.1.4 Alignment and LTR Prediction 

Once a candidate pair is reported, the regions flanking the corresponding match are evalu

ated to check if the aggregate region indeed has an expected LTR structure. This is achieved 

by computing an alignment as follows: For each candidate pair four substrings each of 

length Lmax — Lex are extracted as indicated in Figure 5.5, following which two alignments are 

computed — one alignment between s[i + Lex .. i + Lmax - 1] and s\j + Lex .. j + Lmax - 1], 

and another alignment between the reverse of s[i — (Lmax — Lex) .. i — 1] and the reverse 

of s[j — (Lmax — Lex) .. j — 1], We use standard dynamic programming techniques for com

puting an optimal global alignment score between two sequences using affine gap penalties 

[Gotoh (1982)]. In order to save run-time, alignment computation is restricted over a band 

of diagonals while ensuring the optimality of score. Once the alignments are computed, an 

aggregate alignment score is calculated by adding the scores of the best aligning prefixes in 

the two computed alignments plus the matching score of the anchored match in the middle. 

If this aggregate score satisfies LI, the boundaries of the two aligning regions is reported as a 

predicted pair of LTRs. 

As part of the above outlined alignment method, we also account for the presence of TSDs 

and LTR motifs. TSDs are detected by looking for an exact match of length 5-6 bp in the left 

and right vicinity of the predicted 5' and 3' LTRs, respectively (as shown in Figure 5.5). Also, 

the 5' and 3' ends of each of the two LTRs and their vicinity are searched for a presence of 

the motifs TG and CA respectively. Along the process of this search for motifs and TSDs, the 

alignment boundaries are adjusted between the predicted pair of LTRs. 

In order to be able to distinguish among the predictions made by our algorithm based 

on the presence and absence of LTR structural signals, we associate a "confidence level" and 

report it as part of each prediction. The confidence level for each prediction is given by the 

following formula: 

Confidence Level = WeightrsD x TSDcode + Weightmotif x Motif 

where 0 < Weighth sq , Weightmotl/ < 1 are weights assigned by the user to specify the 

relative importance of the presence of identical TSDs and motifs; note that WeighthsD + 
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TSDs 5' Motif (TG) 3' Motif (CA) Confidence Level 
Identical Present Present 1.0 
Identical Present Absent 0.75 
Identical Absent Present 0.75 
Identical Absent Absent 0.5 

Not Identical Present Present 0.5 
Not Identical Present Absent 0.25 
Not Identical Absent Present 0.25 
Not Identical Absent Absent 0.0 

Table 5.1 Confidence levels for different scenarios depending on the pres
ence or absence of TSDs and motifs. 

Weightm o t i f  = 1. For example, if the presence of the motifs in both LTRs is only half as 

important as the presence of identical TSDs, then the values can be: Weightmon/ = 0.33 and 

Weightrsd = 0.67. For a given prediction: TSDœde is set to 1 if the two predicted TSDs are 

identical, and 0 otherwise; and Motif code is set to 1 if both 5' and 3' LTRs start and end with 

TG and CA respectively, 0.5 if only one motif is found, and 0 otherwise. Given weights of 

0.5 for both WeightxsD and Weightmotif, Table 5.1 shows the different confidence levels and 

their meanings. 

5.3.2 Parallelization 

The sequential algorithm presented in the previous section is parallelized in the following 

manner: The input sequence can be distributed evenly across processors. To ensure that no 

pairs are missed, the last Dmax — 1 characters in the local portion of the input are duplicated as 

a prefix in the local portion of the next processor, resulting in at most ~ + Dmax — 1 characters 

per processor. Once distributed, each processor can run the serial algorithm on its local portion 

of the input without needing to further communicate. The speedup of the preprocessing phase 

is proportional to n+pmax, thereby achieving a linear speedup as long as Dmax « The 

speedup of the candidate pair generation and alignment phases are however highly dependent 

on the input, and the distribution of the repetitive elements among processors. Although one 

can dynamically balance this workload, our current implementation does not support such 
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Parameter Name Default Value Comment 

Dmin 100, 15000 Distance constraints (L2) for 5'-3' LTR pair 

Lmini Lmax 100, 1000 Length constraints for 5'-3' LTR pair 
Lex 20 Exact match length requirement for 5'-3' LTR pair 
T 75% Similarity threshold of a 5'-3' LTR pair (LI) 

match 2 Match score 
mismatch -5 Mismatch score 
open_gap 6 Gap opening penalty 

continuation_gap 1 Gap continuation penalty 
WeightxsD 0.5 Weight for presence/absence of TSD 
W eightmotif 0.5 Weight for presence/absence of the motif T G . . .  C A  

Table 5.2 Parameter set for our program with default values. 

features. 

5.3.3 Software Availability 

We developed a software program called LTR-par that implements our LTR retrotrans

poson detection algorithm. The implementation is in C and can be run either serially or 

on multiprocessor computers and clusters with support for MPI (e.g., MPICH [Gropp et al. 

(1996)]). The software is available free for academic use. 

5.4 Results 

5.4.1 Quality Validation 

Validation of our software was performed by running the program on the entire yeast 

genome and comparing the results against a "benchmark" of known LTR retrotransposon 

locations ( [Kim et al. (1998)], see the URL http://www.public.iastate.edu/~voytas for more 

details). The list of parameters and their values used while running our LTR_par software is 

shown in Table 5.2. 

The yeast genome has 16 chromosomes, and the benchmark has a total of 50 known full-

length LTR retrotransposons. LTR-par predicted a total of 191 elements with different confi-
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Chromosome LTRjpar LTRSTRUC Chromosome 
TP FP FN TP FP FN 

1 1 0 0 1 0 0 
2 3 0 0 2 0 1 
3 1 0 1 1 0 1 
4 7 0 1 1 2 7 
5 1 1 1 1 0 1 
6 1 0 0 1 0 0 
7 6 3 0 5 0 1 
8 2 0 0 2 0 0 
9 1 0 0 1 0 0 

10 2 0 0 2 0 0 
11 0 0 0 0 0 0 
12 5 0 1 4 0 2 
13 3 1 1 3 0 1 
14 3 0 0 2 0 1 
15 3 0 1 3 0 1 
16 5 0 0 5 0 0 

Total 44 5 6 34 2 16 

Table 5.3 Quality validation of running LTR-par and LTR_STRUC pro
grams on the entire yeast genome. 

dence levels: 49 with a confidence level of 1, 11 with a level of 0.75, 44 with a level of 0.5, 57 

with a level of 0.25, and 30 with a level of 0. We extracted the 49 predictions with confidence 

level 1, and evaluated them against the benchmark entries as follows. Each prediction made 

by LTR-par is categorized as a "true positive" if the prediction is part of the benchmark, and a 

"false positive" otherwise. Those retroelements that were not part of our prediction are labeled 

"false negative". The results are shown in Table 5.3, listed by each chromosome. 

All the 44 true positives accurately predicted the LTR boundaries along with their TSDs 

and motif locations. Of the 6 false negatives, 3 were not identified because they do not have 

identical TSDs; all these 3 were however accurately reported at a lower confidence level (0.5). 

Of the remaining three, one was not identified because of a low LTR sequence identity (69%) 

and another was identified with a lower confidence (0.5) because of boundary mis-predictions 

resulting from its computed optimal alignment not matching the "biologically-preferred" LTR 
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boundaries in the benchmark entry. LTR-par identified the last false negative entry although 

with its predicted LTR boundaries inconsistent with that of the benchmark entry; however, 

this approximate prediction was made with a confidence of 1. 

Of the 5 false positives, 3 of them were LTRs part of other full-length retroelements but 

reported because they were similar and proximate along the genome. We invalidated these can

didates by ensuring that there is no known reverse transcriptase coding sequences intervening 

the predicted 5' and 3' sequences (by running tblastx [Altschul et al. (1990)]). Of the remaining 

two false positives, one shares its 3' LTR with that of a true positive prediction, while the 5' is 

different. We speculate that this is a nested retrotransposon, although further investigation is 

required to validate this claim. The last false positive is same as the last false negative case we 

discussed above — the 3' LTR (334 bp long) matches accurately with that of the benchmark; 

however, instead of the 5' LTR (140 bp long) reported in the benchmark, our prediction has 

a longer 5' prediction that is 338 bp long, covering the benchmark's 5' region. The fact that 

there is a 5' LTR that matches closely in length and sequence identity with that of the 3' LTR 

(along with a pair of identical TSDs and motifs as predicted by LTR-par) suggests that the 

length discrepancy between this LTR pair in the benchmark record is probably outdated with 

respect to the current sequence in GenBank. 

For comparison purposes, we also ran the LTRSTRUC program on the yeast genome and 

compared its results against the benchmark. The program was run in its default parameter 

settings (which has a similarity threshold of 75%), and at the highest level of "thoroughness" 

permitted by the program [McCarthy and McDonald (2003)]. These results are also shown in 

Table 5.3. Of the total 16 false negatives, the program misses all the three elements with non-

identical TSDs (note that LTR-par identifies these as low confident predictions). As expected, 

the program also misses the retroelement with 69% LTR sequence identity. We could not 

ascertain the reason(s) for missing of the remaining 12 LTR pairs. It is likely that the program 

either failed to generate candidate pairs because of jumping by Ai characters as a means to 

save run-time or that an alignment that was inferior to a best alignment was computed on 

aligning them. 
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5' LTR 3' LTR 3' LTR 
(a) 

(b) 

(c) 

472,377 472,714 477,965 478,298 479,016 483,549 483,886 

473,432 
Genome Co-ordinates 

Figure 5.( A case of nested retrotransposons in chromosome 10 of S. cere-
visiae with 3 LTRs. The bottom-most line indicates the genome 
(not to scale). Part (a) shows the benchmark co-ordinates for 
the LTRs. Parts (b) and (c) show the two LTR_par predictions. 

The above results show that LTR.par has a better sensitivity than LTRSTRUC, while 

LTRSTRUC has a better specificity than LTR-par. For a de novo prediction program, while 

it is important to keep the number of false predictions low in the interest of saving further 

validation efforts, it is more important to have high sensitivity because a missed prediction 

cannot be found through subsequent post-processing of the program's output. As for the false 

predictions made by LTR-par, we observed that most of these predictions are due to generic 

repeats that have both high sequence identities and genomic proximities. In addition to offering 

a higher sensitivity, the scheme of predicting at different confidence levels provides additional 

flexibility in handling false predictions. For instance, in case of the above results on the yeast 

genome, even though a total of 191 predictions were reported by LTR.par, 44 of the total 50 

retroelements were predicted with a confidence of 1, while a majority of these false predictions 

were reported at lower confidence levels. This allows a user to evaluate the predictions in the 

order of confidence reported. 

There was also a case of "nested" retrotransposon in the benchmark data set along chro

mosome 10. Figure 5.6 shows this case, where one 5' LTR is shared between two full-length 

retrotransposons. As illustrated in the figure, our software also predicted the two retrotrans

posons, one of which with consistent boundary and TSD predictions as well. 

Besides the yeast genome, we also ran LTR.par on a collection of 9 rice BAG sequences, 

randomly selected from a larger set of rice BAGs analyzed using LTR.STR UC by McCarthy et 
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Organism Genome Size Number of Total Time 
(in bp) processors (in minutes) 

Saccharomyces cerevisiae 12,070,811 8 1.2 
Arabidopsis thaliana 119,186,497 32 67 

Drosophila melanogaster 118,357,599 32 33 
Pan troglodytes 3,084,092,060 50 491 

Table 5.4 Run-time results of LTR_par on different genomes. 

al [McCarthy et al. (2002)]. Both the programs detected 8 full-length LTR retrotransposons in 

common. However, LTR-par detected 4 predictions that were absent in the LTRSTRUCs list 

of predictions. On the other hand, LTR.STRUC predicted 2 solo-LTRs (i.e., non full-length 

elements) which were not predicted by LTE,.par. 

5.4.2 Performance Results 

As for run-time on the yeast genome (over 12 M b p ) ,  I / T R . S T R  U G  took about 210 minutes 

on a Windows Intel Pentium III 1 GHz machine, while LTR-par took 10 minutes on a single 

Intel Pentium III 1.1 GHz processor. While LTR.par spends much less time on candidate 

pair generation than LTR^STRUC, it spends most of its time in performing alignments simply 

because it does more work to guarantee optimality. For example, on the yeast genome, LTR.par 

spent only 8% of the time in preprocessing and generating pairs, while the remaining 92% was 

spent in aligning the LTR candidates. This extra effort spent in ensuring a thorough alignment 

is supported by a better sensitivity of our software when compared to LTR.STRUC, as was 

seen in the above validation studies. We also studied the performance of LTR.par on a Linux 

cluster of 25 nodes, each with 2 Intel Xeon 3.06 GHz processors and 2 GB RAM. The parallel 

run-times taken by LTR.par for genomes of different sizes are shown in Table 5.4. 

In order to assess the parallel scalability of our current implementation, we ran LTR-par 

on different number of processors by keeping the input size fixed. Table 5.5 shows these results 

on the entire yeast genome (11 Mbp) and on the chromosome 3R (27 Mbp) of the Drosophila 

genome. As can be observed in both cases, the parallel efficiency decreases with increase in the 
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Input Number of processors 
1 2 4 8 16 32 

Yeast Genome 226 150 96 71 53 40 
Chromosome 3R 820 598 455 294 270 255 

Table 5.5 Parallel run-times (in seconds) of LTRjpar on the yeast genome 
and the chromosome 3R of Drosophila. 

number of processors. This is expected because the current implementation does not distribute 

alignment workload across processors, i.e., a candidate pair generated on a given processor is 

aligned on the same processor, regardless of the repetitive nature of the portion of genome 

assigned to the processor. Thus the parallel bottleneck is the processor with the maximum 

alignment work. 

5.4.3 A Large-Scale Application 

In order to validate the applicability of the software on newly sequenced genomes, we 

ran LTR.par on the entire chimpanzee (Pan troglodytes) genome [Sequencing and Consortium 

(2005)]. The chimpanzee genome comprises of 23 pairs of autosomal chromosomes and 2 pairs 

of sex chromosomes. The sequence data downloaded from GenBank as of September 2005 has 

over 3 billion bp. On 50 processors of the Linux cluster described above the program took 

under 8.5 hours to complete on the entire genome. On the longest chromosome («229 Mbp 

long chromosome 1) the program took about 27 minutes, while the longest run-time was 58 

minutes on chromosome 4 («209 Mbp long). Running on this genome takes a week to 10 days 

using LTR.STRUC [Polavarapu (2005)]. 

As part of an ongoing research initiative, a team at Georgia Institute of Technology is work

ing on identification of full-length LTR retrotransposons in the chimpanzee genome [Polavarapu 

et al. (2006)]. Recently, the team identified a set of full-length retroelements using a custom-

developed framework that performs an extensive search for LTRs accompanied by other impor

tant intervening patterns such as known reverse transcriptase sequences, primer binding site, 

poly-purine tract, etc. Due to its elaborate treatment, the full-length elements detected by this 
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procedure are expected to be highly accurate and conservative; so we used the resulting set as 

a benchmark for our studies and performed a case study on a randomly chosen chromosome 

(chromosome 12 which is «135 Mbp long). 

The benchmark set for chromosome 12 comprised of 19 full-length elements. Under the 

default parameter settings in Table 5.2, our program predicted only 7 of the 19. When the 

similarity threshold (r) was decreased to 70% and Lmax was increased 2,000 bp, 12 of the 19 

predicted correctly. Note that only 3 of these 12 were at confidence level 1. Of the remaining 7 

not predicted by LTR-par, 5 were predicted when the similarity threshold was further reduced 

from 70% to 60%. The remaining two were not predicted because one has two LTRs of largely 

differing lengths (658 bp and 960 bp) and another has less than 50% sequence similarity between 

the LTRs. In addition to the benchmark hits, LTR.par predicted a total of 895 elements, 

including 38 at confidence level 1. Upon investigation of randomly chosen predictions, we found 

that many candidates do not contain any known reverse transcriptase sequences. However, the 

38 predictions with confidence 1 show promise and need further validation. 

5.5 Discussion 

The results of validating our software are encouraging. The sensitivity on the yeast genome 

is better than that of the LTRSTRUC because our algorithm more accurately models mutation 

events in LTR and TSD regions. Moreover, LTR.par offers good flexibility by providing the 

user with a better control — the user can assign weights to the presence/absence of TSDs and 

TG... CA motifs, and the software can output its predictions at different confidence levels 

reflecting the weights specified by the user. Also, if a user is searching a newly sequenced 

genome for LTR retroelements, the user can try different combinations of weights and scoring 

parameter values and observe changes in the predictions before deciding on an appropriate 

set of parameters. The speed of our software plays a critical role in facilitating multiple such 

experiments under different parameter settings. The software can also be used to identify 

nested retroelements; cases that correspond to multiple nested insertions can be detected by 

running our software iteratively on the genomic sequence with all the full-length elements found 
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in previous iterations excised out. 

Given that the current version of the software accounts only for the structural attributes 

such as TSDs and motifs, we recommend using our software for de novo full-length LTR 

retrotransposon prediction on genomes in which the two LTRs of each retrotransposon are 

expected to be highly conserved. The specificity of the current state of our software can be 

extended to incorporate other structural attributes typical of an LTR retrotransposon: The 

genomic region between a pair of LTR sequences typically contains special-purpose sequences 

such as PPT, PBS, gag, pol, and env, and detecting these patterns is important in confirming 

the biological identity of each prediction. Poly-Purine Tract can be detected by searching for a 

purine-rich (bases A/G) region of an approximate length of 10 bp immediately upstream of the 

predicted 3' LTR boundary. Similarly, the region immediately downstream of the predicted 

5' LTR sequence can be searched for presence of Primer Binding Site. PBS is usually a 

complement of a known tRNA 3' terminal sequence — a pattern that can be input by the 

user. The genes in the gag and env regions can be detected by looking for sequences that 

encode retroviral capsid and envelope proteins respectively. The genes in the pol region can be 

searched for sequences that encode for protease, integrase and reverse transcriptase enzymes. 

5.6 Concluding Remarks 

In this chapter, we provided efficient algorithms and software towards detection of full-

length LTR retrotransposons. One salient feature of our method is a space- and time-efficient 

algorithm for generating candidate LTR pairs, which facilitates use of rigorous methods for 

aligning the candidates in order to ensure high quality LTR predictions. The software has been 

designed with the intent of giving a high degree of flexibility to the user. The various planned 

functional improvements to the software, such as incorporation of detection strategies for PPT, 

PBS, gag, pol genes in the structure finding procedure, should strengthen the specificity of the 

software. Due to the ubiquity of LTR retroelements in complex eukaryotic genomes, developing 

a highly accurate and fast LTR retrotransposon discovery tool can significantly advance the 

state of knowledge in retrotransposon research topics. 
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CHAPTER 6. SCAFFOLDING GENOMIC CONTIGS USING LTR 

RETROTRANSPOSONS 

The abundance of LTR retrotransposons in several eukaryotic genomes have traditionally 

been viewed as a source of complication in their assembly. In this chapter, we present a novel 

approach [Kalyanaraman et al. (2006a)] that provides an alternative — a method that can 

exploit the presence of these repeat elements in genomes and provide valuable information for 

performing one stage of genome assembly. 

Hierarchical sequencing [Consortium (2001)] is being used to sequence the maize genome 

[NSF (2005)]. In this approach, a genome is first broken into numerous smaller BAC clones, 

each of size up to 200 kbp. Next, a combination of these BACs that provide a minimum tiling 

path based on their locations along the genome is determined. Each selected BAC is then 

individually sequenced using a shotgun approach that generates numerous short («500-1,000 

bp long) fragments. The problem of assembling the target genome is thereby reduced to the 

problem of computationally assembling each BAC from its fragments. 

The fragments generated by a shotgun experiment approximately represent a collection of 

sequences originating from positions distributed uniformly at random over each BAC. As with 

a jigsaw puzzle, the idea is to generate fragments such that each genomic position is expected to 

be covered (or sampled) by at least one fragment — and also ensuring that there is sufficient 

computable evidence in the form of overlaps between fragments to carry out the assembly. 

Regardless of the coverage specified, however, gaps invariably occur during sequencing, i.e., 

it cannot be guaranteed that every position is covered by at least one fragment. Coverage 

affects the nature of gaps — a low coverage typically results in several long gaps, while a high 

coverage results in fewer and shorter gaps. Because of gaps, assembling a set of fragments 



www.manaraa.com

106 

BAC 

Clone mat 
pairs 

Contigs 

! gapi fja?2 gaps 

1 Physical 
gap « 

Physical 
gap e , 

Physical 
gap 

t 
1 
1 

Physical 
gap 

! 
fc2 

Physical 
gap 

fc4 

Figure 6.1 An example showing 6 pairs of clone mate fragments (shown 
connected in dotted lines) sequenced from a given BAG. The 
relative order and orientation between contigs ci and c% (also, 
between C3 and C4) can be inferred from the clone mates. 

sequenced from a BAG typically results in not one but many assembled sequences (or contigs) 

that represent the set of all contiguous genomic stretches sampled. The next step, scaffolding, 

is aimed at determining the order and orientation of the contigs relative to one another. Once 

scaffolded, the identified gaps between contigs can be filled through targeted experimental 

procedures called pre-finishing and finishing. For simplicity, we use the term "finishing" to 

collectively refer to both these procedures. 

The main focus of this chapter is the scaffolding step. The need for scaffolding arises 

from the fact that there could be gaps in sequencing. To be able to identify a pair of contigs 

corresponding to adjacent genomic stretches, current methods generate shotgun fragments in 

"pairs" — each BAC is first broken into smaller clones of length «5 kbp, and each such clone 

is sequenced from both ends thereby producing two fragments which are referred to as clone 

mates (or a clone pair). During scaffolding, the fact that a pair of clone mates originated 

from the same «5 kbp clone can be used to impose distance and orientation constraints for 

linking contigs that span the corresponding fragments [Batzoglou et al. (2002); Huson et al. 

(2001); Jaffe et al. (2003); Mullikin and Ning (2003); Pop et al. (2004)]. Figure 6.1 illustrates an 

example of scaffolding contigs based on clone mate information. This technique is not, however, 

sufficient to link contigs surrounding gaps without a flanking pair of clone mates {gap2 in 

Figure 6.1). Such gaps, called physical gaps, are typically harder to "close", and involve costly 

finishing efforts. Performing a higher coverage sequencing is an effective but expensive approach 

to reduce the occurrences of gaps. The approach proposed in this dissertation provides an 
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alternative mechanism to scaffold around physical gaps as well, subject to their repeat content. 

In this research, we introduce a new variant of the scaffolding problem called the retroscaf-

folding problem. The problem is to order and orient contigs based on their span of LTR 

retrotransposon-rich regions of the genome. This approach has the following advantages: 

• It does not require clone mate information. Thus, our approach complements existing 

scaffolding approaches for genomes with significant LTR retrotransposon content. Also, 

with the advent of newer sequencing technologies [Margulies et al. (2005)] that do not 

generate clone mate information, the importance of our approach is further enhanced. 

• It can be used to identify LTR retrotransposon-rich portions within the unfinished ge

nomic regions. Such information can be useful if it is decided to not finish repetitive 

regions in the interest of saving costs, as is the case with the maize genome project [NSF 

(2005)]. 

» In genome projects of highly repetitive genomes, most of the sequencing and finishing 

efforts are expected to be spent on repeat rich regions. This is one of the main concerns 

in the on-going efforts to sequence the maize genome, at least 50% of which is expected to 

be retrotransposons. The retroscaffolding technique provides a mechanism to reduce se

quencing coverage without affecting the quality of the genie portion of the final assembly, 

thereby providing a means to reduce the sequencing costs. 

In Section 6.1, we describe the retroscaffolding idea, formulate it as a problem, and discuss 

the various factors that affect the ability to retroscaffold. For obtaining a proof of concept, 

we conducted experiments on previously sequenced maize BAG data. The results show that 

(i) 3X/4X coverage sequencing is suited for exploiting the data's repeat content towards ret

roscaffolding, (ii) retroscaffolding can yield over 30% savings in finishing costs, and (iii) with 

retroscaffolding it is possible to opt for a lower sequencing coverage. These and other ex

perimental results assessing the effects of various factors on retroscaffolding are presented in 

Section 6.2. As part of the NSF/DOE/USDA maize genome project [NSF (2005)], we are 

working on applying the retroscaffolding technique to the maize data as it becomes available. 
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To this effect, we are developing an algorithmic framework to perform retroscaffolding as de

scribed in Section 6.3. In Section 6.4, we present the results of our experiments to assess the 

effect of applying both clone mate based scaffolding and retroscaffolding on maize genomic 

data. Various strengths and limitations of the retroscaffolding technique axe discussed in Sec

tion 6.5. Given that retrotransposons are abundant in genomes of numerous plant crops yet to 

be sequenced (e.g., wheat, barley, sorghum, etc.), the capability of retroscaffolding to exploit 

this repeat content can provide a significant means to reduce sequencing and finishing costs. 

6.1 Retroscaffolding 

Long Terminal Repeat (LTR) retrotransposons constitute one of the most abundant classes 

of retrotransposons. As earlier described in Chapter 5, they are distinctly characterized in their 

structure by two terminal repeat sequences — one each at the 5' and 3' ends of a retrotranspo

son inserted in a host genome. Given that these retrotransposons are typically 10-15 kbp long, 

their flanking LTRs can also be expected to be separated by as many bps along the genome1. 

Moreover, the LTR sequences are identical at the time a retrotransposon inserts itself into 

a host genome, and gradually diverge over time due to mutations. Yet, the LTRs flanking 

most retrotransposons are similar enough for detection. These properties form the basis of our 

retroscaffolding idea, as explained below. 

Low coverage sequencing of a genome with significant LTR retrotransposon content is 

likely to result in a proportionately large number of gaps that span these repetitive regions. 

If it so happens that the sequencing covers only the two LTRs of a given retrotransposon, 

a subsequent assembly can be expected to have two contigs each spanning one of the LTRs. 

Therefore, the detection of two identical or highly similar LTR-like sequences in two contigs is 

a necessary (but not sufficient) indication that the contigs sample the flanking regions of an 

inserted retrotransposon. If this indication can be further validated to sufficiency by searching 

for other structural signals of an LTR retrotransposon, then the contigs can be relatively 

ordered and oriented (because LTRs are directed repeats). In addition, this implies that the 

'Sometimes, LTR retrotransposons can be nested within one another, accordingly affecting the distances 
between the 5' and 3' LTRs. 
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Figure 6.2 (a) Structure of a full-length LTR retrotransposon. (b) An 
example showing two contigs c\ and Cg with a retro-link between 
them. 

intervening region between two consecutively ordered contigs contains retrotransposon related 

sequences — an information that can be used to prioritize the gaps for finishing, and potentially 

reduce efforts spent on finishing repetitive regions, if so desired. 

The structure of a full-length LTR retrotransposon was described in detail in Chapter 5 (see 

Section 5.1). For ease of exposition, we follow the same labeling convention from LI through 

L5 as introduced in Section 5.1. 

For a sequence s, let s^=s, and sr denote its reverse complement. A sequence c is said to 

contain a sequence I if there exists between c and either if or F', a "good quality" semi-global 

alignment. Let an LTR pair (1$/, I3' ) denote the two LTRs of a given LTR retrotransposon. 

Definition of a Retro-link: Given a set L of n LTR pairs, two contigs c, and Cj are said 

to be retro-linked, if 3 (Z5/, ly) 6 L such that both ct and Cj contain l5i or ly or both. 

Note that the same pair of contigs can be retro-linked by more than one LTR pair. An 

example of a retro-link between two contigs is shown in Figure 6.2b. The above definition can 

be easily extended to account for additional structural attributes such as L3, L4 and L5, to 

ensure that a retro-link indeed spans the same full-length LTR retrotransposon. 

The Retroscaffolding Problem: Given a set C of m contigs and a set of retro-links, 

partition C such that: 
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• each subset is an ordered and oriented set of contigs, 

• every pair of consecutive contigs in each subset is retro-linked and there is no contig that 

participates in two retro-links in conflicting orientations, and 

• the sum of the number of LTR pairs corresponding to all used retro-links is maximized. 

The retroscaffolding problem can be viewed as a new variant of the traditional scaffolding 

problem, which is called the Contig Scaffolding Problem [Huson et al. (2001)]. In the latter, the 

input is a set of contigs and a set of clone mate links, where each clone mate link corresponds 

to a distance and orientation constraint imposed by a pair of fragments sequenced from the 

same clone of a known approximate length. This is similar to the distance and orientation 

constraints imposed by a retro-link between the two contigs. Also, like in the retroscaffolding 

problem, not all clone mate links may be used in the final ordering and orientation, while the 

problem is to maximize the overall number of mate pair evidence corresponding to the clone 

mate links used in scaffolding. Therefore, the computational complexity of the retroscaffolding 

problem is same as that of the contig scaffolding problem, which is NP-complete [Huson et al. 

(2001)]. 

The effectiveness of retroscaffolding on a genome is dictated by the following factors: 

LTR retrotransposon abundance: The ability to retroscaffold depends on the num

ber of retro-links that can be established, which is limited by the number of detectable LTR 

retrotransposons in the genome. Note that this approach of exploiting the abundance in retro

transposons offers a respite from the traditional view that these are a source of complication 

in genome projects. 

Presence of distinguishable LTRs: LTRs from different retrotransposons but from the 

same "family" may share substantial sequence similarity. Therefore, it is essential to take 

into account other structural evidence specific to an insertion before establishing a retro-link 

between two contigs. Even if the same LTR retrotransposon is present in two different locations 

of a genome, it can be expected that the TSDs are different because they correspond to the host 

genomic sequence at the site of insertion. It may still happen that a target genome contains the 

same family retrotransposons in abundant quantities, and other structural attributes become 
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Parameter Name Default Value Description 
Dmin/Dmax 600/15,000 bp Distance constraints between 5' and 3' LTRs (L2) 
r 70% % identity cutoff between 5' and 3' LTRs (LI) 
Lmin/Lmax 100/2,000 bp Minimum/maximum allowed length of an LTR 
Match/mismatch 2/-5 Match and mismatch scores 
Gap penalties 6/1 Gap opening and continuation penalties 

Table 6.1 LTR.par parameter settings. 

less distinguishable as well. If BAC-by-BAC sequencing is used, the above situation can be 

alleviated by applying retroscaffolding to contigs corresponding to the same BAC (instead of 

across BACs). This is because the likelihood of the same family occurring multiple times at a 

BAC level is much smaller than at a genome level. 

Sequencing coverage: Retroscaffolding targets each sequencing gap that spans an inserted 

retrotransposon such that its flanking LTRs are represented in two different contigs. Hence

forth, we will refer to such gaps as retro-gaps. Given the length of such an insert ranges from 

10-15 kbp (greater, if it is a nested retrotransposon), the coverage at which the genome is 

sequenced is a key factor affecting the ability to retroscaffold. If the sequencing coverage is 

too high (e.g., 10X), then there are likely be so few (short) sequencing gaps that the need for 

any scaffolding technique diminishes. Whereas at very low coverage (e.g., IX) long sequencing 

gaps that span entire LTR retrotransposons are likely to prevail. 

6.2 Proof of Concept of Retroscaffolding 

In this section, we provide a proof of concept for retroscaffolding. For this purpose, four 

finished maize BACs (listed in Table 6.2) were acquired from Cold Spring Harbor Laboratory 

[McCombie (2005)]. The first step was to determine the LTR retrotransposon content of these 

BACs. LTR_par, which is our program for identifying LTR retrotransposons as described in 

Chapter 5, was used to analyze each BAC with the parameters specified in Table 6.1. Table 6.2 

summarizes the findings. As can be observed, the fraction of LTR retrotransposons in these 

BACs averages 42%, consistent with the latter's estimated abundance in the genome. 
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GenBank BAC Length Number of LTR Retrotransposons in BAC 
Accession (in bp) retrotransposons Length in bp % bp 

BACi AC157977 107,631 3 29,578 27% 
BACg AC160211 132,549 6 60,391 46% 
BACs AC157776 147,470 8 73,099 50% 
BAC4 AC 157487 136,932 6 57,783 42% 

Table 6.2 Summary of the LTR retrotransposons identified in 4 maize 
BACs using LTR.par. 

The effect of sequencing at different coverages was assessed as follows. A program that 

"simulates" a random shotgun sequencing over an arbitrary input sequence at a user-specified 

coverage was acquired from Scott Emrich at Iowa State University [Emrich (2005)]. Each run 

of the program produces a set (or sample) of fragments, along with the information of their 

originating positions. We ran this program on each BAC for coverages IX through 10X, and 

for each coverage 10 samples were collected to simulate sequencing 10 such BACs. For each 

sample, using the knowledge of the fragments' originating positions, the set of all contiguous 

genomic stretches covered (and thereby the set of sequencing gaps) was determined. Ideally, 

assembling the sample would produce a contig for each contiguous stretch. Based on the 

placement information of the contigs on the BAC and that of the LTR pairs (Table 6.2) on 

the BAC, each LTR pair was classified into one of these three classes (see Figure 6.3): 

• CgC: both LTRs are contained in two different contigs, 

• C_C: both LTRs are contained in the same contig, and 

• GgX: at least one LTR is not contained by any contig (i.e., it is located in a gap). 

In this classification scheme, it is easy to see that retro-links can be expected to be es

tablished only for CgC LTR pairs. Therefore, the ratio of the number of CgC LTR pairs 

to the total number of LTR pairs is indicative of the maximal value of retroscaffolding at a 

given coverage. We computed this ratio for each of the 4 BACs used in our experiments, by 

considering one coverage at a time, and counting the LTR pairs in each of the three classes over 

all 10 samples. From Table 6.3, we observe that the ratio is maximum for a 3X coverage for 3 
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Figure 6.3 Classification of LTR pairs based on the location of sequencing 
gaps, LTRs, and contigs. Dotted lines denote sequencing gaps. 
Retro-links correspond to the class CgC. 

Coverage BACi BAC2 BACs BACi 
CgC C_C CgC% CgC% CgC% CgC% 

IX 16 1 13 53 83 63 63 
2X 26 0 4 87 95 77 92 
3X 25 3 2 83 100 97 100 
4X 27 3 0 90 100 88 100 
5X 24 6 0 80 95 93 95 
6X 22 8 0 73 83 76 98 
7X 19 11 0 63 83 61 100 
8X 18 12 0 60 77 64 67 
9X 16 14 0 53 48 50 60 

10X 7 23 0 23 37 31 43 

Table 6.3 Classification of the LTR pairs in 4 BACs, with respect to a 
set of 10 shotgun samples obtained from each BAC at different 
coverages. 

out of the 4 BACs, and 4X for the other BAC. This implies that a 3X/4X coverage project is 

expected to best benefit from the retroscaffolding approach. To understand the above results 

intuitively, observe that a very high coverage has a high likelihood of sequencing an LTR retro

transposon region to entirety, making retroscaffolding unnecessary; while a very low coverage 

results in a high likelihood of LTRs falling in gaps, making retroscaffolding ineffective. Both 

these expectations are corroborated in our experiments — in Table 6.3 the gradual increase in 

C-C and the decrease in GgX with increasing coverage. The C-C increase with coverage also 

indicates the amount of efforts spent in sequencing retrotransposon-rich regions. 

In our next experiment, we assess the potential savings that can be achieved at the finishing 

step through the information provided by retroscaffolding on gap content. Table 6.4 shows the 

CgC C_C 

-£——3-
5' 3' 5' 3' 5' 3' 
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Coverage BACs BACa Coverage 
All gaps Retro-gaps %Retro-gaps All gaps Retro-gaps %Retro-gaps 

IX 70.5 26.4 37.4 78.0 24.8 31.8 
2X 88.7 33.6 37.9 93.5 33.4 35.7 
3X 84.6 32.2 38.1 84.0 31.0 36.9 
4X 65.7 26.6 40.5 64.5 19.5 30.2 
5X 50.6 19.3 38.1 46.4 16.7 36.0 
6X 37.4 13.7 36.6 39.5 13.2 33.4 
7X 28.3 9.5 33.6 26.6 9.1 34.2 
8X 18.7 6.5 34.8 19.1 6.3 33.0 
9X 13.0 3.0 23.1 11.9 5.9 49.6 

10X 9.3 2.7 29.0 9.5 2.3 24.2 

Table 6.4 Number of retro-gaps vs. all sequencing gaps. Measurements 
are averaged over all 10 samples of each of the two BACs. 

number of gaps generated at various sequencing coverages, and the number of which can be 

detected using retroscaffolding (i.e., retro-gaps). While the results are shown only for two 

BACs, we observed a similar pattern in all four BACs. As each retro-gap corresponds to a 

potential region of the genome that may not necessitate finishing, the ratio of the number of 

retro-gaps to the total number of sequencing gaps indicates the potential savings achievable at 

the finishing step because of retroscaffolding. Prom the table we observe this ratio ranges from 

23%-40% for BAC2, and 24%-49% for BAC4] averaging over 34% savings for both BACs. 

Table 6.4 also shows that sequencing BAC2 at a 6X coverage is expected to result in %37 

sequencing gaps; while sequencing at a 4X coverage and subsequently applying retroscaffold

ing is expected to result in an effective 39 gaps (% 65.7—26.6). This implies that through 

retroscaffolding it is possible to reduce the coverage from 6X to 4X on BAC2 without much 

loss of scaffolding information. As retroscaffolding can be used independent of clone mate 

information, we are working on evaluating the collective effectiveness of both clone mate-based 

scaffolding and retroscaffolding approaches. If similar results can be shown at a much larger 

scale of experimental data for a target genome, then retroscaffolding can be used to advocate 

for a low coverage sequencing, directly impacting the sequencing costs of repetitive genomes. 



www.manaraa.com

115 

6.3 A Framework for Retro-linking 

We developed the following two-phase approach to retroscaffolding. In the first phase, retro-

links are established between contigs that show "sufficient" evidence of spanning two ends of 

the same LTR retrotransposon. Once retro-links are established, the process of scaffolding 

the contigs is the same as scaffolding them based on clone mate information, i.e., each retro-

link can be treated equivalent to a clone mate pair that imposes distance and orientation 

constraints appropriate for LTR retrotransposon inserts. Therefore, in principle, any of the 

programs developed for the conventional contig scaffolding problem [Batzoglou et al. (2002); 

Huson et al. (2001); Jaffe et al. (2003); Mullikin and Ning (2003); Pop et al. (2004)] can be 

used to achieve retroscaffolding from the retro-linked contigs2]. In what follows, we describe 

our approach to establish retro-links. 

There are two types of retro-links that can be established among contig data: (i) those 

that correspond to LTR retrotransposons that are already known to exist in the genome of 

the target organism or closely related species, and (ii) those that are de novo found in the 

contig data. The first class of retro-links can be established by building a database of known 

LTR retrotransposons and detecting contigs that overlap with LTR sequences of the same 

retrotransposon. However, such a database of already known LTR sequences of a target genome 

may hardly be complete in practice. For this reason, the second class of retro-links that are 

based on a de novo detection of LTR sequences in the contig data is preferable. However, 

additional validation will be necessary to ensure the correctness of such retro-links. 

In what follows, we describe the algorithmic framework we developed to establish retro-

links based on already known LTR retrotransposons, and the results of applying it on maize 

genomic data. 

6.3.1 Building a Database of LTR Pairs 

Given that the entire genome of maize has not yet been assembled, the first step in our 

approach is to build a database of maize LTR pairs from previously sequenced maize genomic 

2For our experiments, we used the Bambus [Pop et al. (2004) program. 
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Input Number of 
sequences 

Number of full-
length predictions 

Number of 
LTR pairs 

LTR retrotransposons [Miguel (2005)] 560 556 556 
Solo-LTRs [Miguel (2005)] 149 149 
Maize BACs [Emrich (2005)] 470 1,234 1,234 

Total 1,939 

Table 6.5 Summary of LTR pairs predicted by LTR.par. 

data. A set of 560 known full-length LTR retrotransposons and 149 solo LTRs3 was acquired 

from San Miguel [Miguel (2005)]. In addition, a set of 470 maize BACs were downloaded 

from GenBank [Emrich (2005)]. Because the information about the LTR sequences within the 

full-length retrotransposons and BACs was not available, we used the LTR^par program to 

identify LTR retrotransposons and their location information. We did not include the LTRs 

identified in the four maize BACs listed in Table 6.2, so that they can be used as benchmark 

data for validating retroscaffolding. 

Given a set of sequences, LTR.par identifies subsequences within each sequence that bear 

structural semblance to full-length LTR retrotransposons. Desired values for structural at

tributes can be input as parameters. We used the values shown in Table 6.1. As part of each 

prediction, the locations of both the 5' and 3' LTRs are output. A prediction is made only if 

the identified region satisfies LTR sequence similarity (LI) and LTR distance (L2) conditions. 

Based on the presence of other signals such as the TG..CA motif (L3) and TSDs (L4), each 

prediction is also associated with a "confidence level". A confidence level of 1 implies presence 

of both L3 and L4, 0.5 implies either L3 or L4 but not both, and 0 implies only LI and L2. 

In this research, we use level 1 predictions, although we are currently evaluating other com

binations of LTR pairs from across confidence levels. Table 6.5 shows the statistics over the 

resultant total of 1,939 LTR pairs. 

3Solo LTRs axe typically the result of a deletion/recombination event at a site of an inserted LTR retrotrans
poson, in which only either a 5' or a 3' LTR (or a part of it) survives. 
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6.3.2 An Algorithm to Establish Retro-links 

Let C denote a set of m contigs generated through an assembly of maize fragments corre

sponding to one BAC, and let L denote the set of n LTR pairs (n =1,939 in Table 6.5). Our 

algorithmic framework performs the following steps: 

• SI Compute P  = {(c, { h > J y ) ) \ c  G C ,  { l y j y )  E  L , c  contains l y  or Z3z or both}. 

• S2 Construct a set G  =  { G ] ,  G2,. . . ,  G n } ,  such that VG, Ç C, Vc G Q, (c, (l\,, l\,)) € P. 

Note that G need not be a partition of C. We call each G\ a contig group. 

• S3 VGj € G, compute Ri = {(ci,cj)\ci,cj € (%,(% and Cj are retro-linked by %,,Zy)}. 

A naive way to perform step SI is by evaluating each of the m x n pairs of the form 

(contig, LTR pair), to check if a contig contains one of the LTRs. The check can be performed 

through standard dynamic programming techniques for computing semi-global alignments that 

take time proportional to the product of the lengths of the sequences being aligned. As reverse 

complemented forms also need to be considered, this approach involves 4 x m x n alignments 

in the worst case. 

An alternative and faster way to detect overlapping pairs of contigs and LTRs follows from 

our PaCE approach discussed in Chapter 4: Instead of evaluating all pairs by alignment com

putation, compute alignment only for pairs that show significant promise through sufficiently 

long maximal matches. For this approach, we directly use the PaCE algorithm for first con

structing a GST (see Section 4.3.1) for all contigs and LTRs, and detecting maximal matches 

between pairs (see Section 4.2.2). Since there is no clustering functionality in the current con

text, the order of pairs generated is irrelevant. A pair generated is always further evaluated 

through alignment computation. It is, however, sufficient to report and consider only those 

promising pairs that contain a contig and an LTR. This can be easily achieved without affect

ing the complexity of PaCE pair generation algorithm by extending it to keep track of another 

level of subpartitioning of I sets based on the sequence type (i.e., a contig or an LTR). 

For each generated promising pair, an optimal semi-global alignment is computed. A 

significantly aligning pair of contig and LTR is reported directly in the output. As pairs are 
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output, the set G is computed as well in constant time per pair (step S2). 

Steps Si and S2 ensure that two contigs are paired if and only if they contain LTRs from 

the same LTR pair. To perform S3, it is therefore necessary only to establish additional 

structural evidence such as the presence of TSDs, PPT, PBS, and/or retrotransposon genes. 

The attributes to look for, however, depends on the location of the subsequences corresponding 

to the LTRs within the contigs — for e.g., it may not be possible to look for retrotransposon 

genie sequences if the LTR regions within the contigs are a suffix of one contig and a prefix 

of another (see Figure 6.2b). We perform S3 as follows: we concatenate each pair of contigs 

under consideration in each of the 4 possible orientation combinations, and run LTR.par on the 

concatenated sequence. A retro-link is established between a pair only if sufficient structural 

evidence is detected. 

Preliminary Validations: 

We validated the retro-linking algorithm on BAC\ of Table 6.2 as follows. Shotgun frag

ments were experimentally sequenced at a 3X coverage of the BAC [McCombie (2005)], and 

were assembled [Emrich (2005)] using the CAP3 assembler [Huang and Madan (1999)]. The 

resulting 45 contigs were input along with the 1,939 LTR pairs (in Table 6.5) to our retro-

linking program. Note that the 1,939 LTR pairs do not include the 3 LTR pairs in BAC\ as 

identified by LTR.par (Table 6.2) — that way, the validation reflects an assessment of retro-

linking under practical settings in which a target BAC sequence and its LTR pairs are unknown 

prior to the retroscaffolding step. The experiment resulted in 44 contig groups (= |G|), and 

upon investigation we found that most of the groups were "equivalent", i.e., the corresponding 

LTR pairs share a significant sequence identity (> 95%). The equivalent groups were merged. 

The subsequent step was to evaluate each contig pair of a merged, group for a valid retro-

link. For detecting retrotransposon genie sequences in contigs, we queried the contigs against 

the GenBank nr database using the tblastx program. Other structural attributes were detected 

using LTR^par. This step resulted in only two retro-linked pairs: (cj0 -> cie), and (c%4 —> C41) 

with the arrows implying the order in which the contigs can be expected to occur along the 

"unknown" BAC sequence (BACi) in the specified orientations. We verified the predictions 
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Prediction: 
BACi 
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Figure 6.4 Validation of two retro-links — between contigs cio and cie, and 
contigs C41 and C24. Vertically aligned ovals denote overlapping 
regions, and squares denote retrotransposon hit through tblastx 

against the GenBank nr database. 

by aligning each of these 4 contigs directly against the known sequence of BAC\ and found 

that the retroscaffolding prediction is correct (see Figure 6.4). 

6.4 Scaffolding with Clone Mates and Retro-links 

Retroscaffolding differs from conventional contig scaffolding as it relies on the presence of 

LTR retrotransposons instead of the clone mate information. While this suggests that either of 

the techniques can be applied independent of one another, the results may themselves be not 

mutually exclusive — i.e., it is possible that the relative ordering and orientation between the 

same two contigs are implied by both the techniques. While such redundancies in output can 

be used as additional supporting evidence for bolstering the validity of scaffolding, the actual 

value added by either of these two techniques is dictated by its respective unique share in 

output scaffolding. Ideally, we would hope that these two results to complement one another. 

We assessed the effect of a combined application of retroscaffolding and clone mate based 

scaffolding on maize genomic contig data as follows: 62 contigs were generated by performing 

a CAPS assembly over a 3X coverage set of fragments sequenced from BAC4. Ideally, all 62 
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Clone mate Retroscaffolding Combined 
scaffolding scaffolding 

Number of scaffolds 32 5 27 
Total span of scaffolds (bp) 120,350 65,605 138,356 
Average span of scaffold (bp) 3,760 6,246 4,457 
Number of contig pairs scaffolded 42 10 71 
Number of assembly gaps covered 22 17 28 

Table 6.6 Results of (i) scaffolding contig data for BAC4 (136,932 bp) using 
clone mate information, (ii) retroscaffolding, and (iii) combined 
scaffolding using both clone mate and retro-link information. 

contigs would be part of just one "scaffold" if the contigs were all to be ordered along the 

target BAC. 

The scaffolding achievable from just the clone mate information was first assessed by run

ning the Bambus [Pop et al. (2004)] program on the contigs. This resulted in 32 scaffolds 

spanning an estimated total of 120,350 bp and each with an average span of 3,760 bp. (Note 

that the "span" of a scaffold output by Bambus is only an estimate, because it includes the 

size estimated for sequencing gaps between the scaffolded contigs.) We then assessed the scaf

folding achieved by retroscaffolding the contig data — retro-links were first established using 

the framework described in Section 6.3 and the output was transformed as input to Bambus. 

While retroscaffolding resulted in many fewer scaffolds (5), the total span was smaller (65,605 

bp) when compared to clone mate scaffolding. However, the average span of each scaffold was 

almost twice as large in retroscaffolding. This is as expected because the distance constraint 

used for each retro-link was longer ([5000,15000]) than that of clone mate links ([2200,3800]). 

In the next step, we input both the retro-link and clone mate information with their 

respective distance and orientation constraints to Bambus. This combination resulted in fewer 

scaffolds (27) and a longer total span (138,356 bp) than was achieved by just clone mate 

scaffolding — implying that retroscaffolding provides added information that is not provided 

by clone mate information. The above results are summarized in Table 6.6. The table also 

shows the number of contig pairs scaffolded as a result of the respective scaffolding strategies; 
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the higher this number is, the more inclusive scaffolding is on the contigs — ideally, we would 

expect all contigs to be in one scaffold thereby implying (^) contigs pairs. 

We also assessed the individual effect of these scaffolding techniques on "assembly gaps" : 

Each of the 62 contigs was individually aligned to the assembled BAC± sequence and the 

stretch along which each has a maximum alignment score was selected to be its locus on the 

BAC. A maximal stretch along the BAC not covered by any of the 62 contigs was considered 

an "assembly gap". There were a total of 42 such gaps. For each of the three scaffolding 

strategies (i.e., clone mate based, retroscaffolding and combined), an assembly gap is said 

to be "covered" (alternatively, "not covered" ) if there exists a (alternatively, does not exist 

any) pair of scaffolded contigs spanning the gap. Based on this definition, the number of 

covered assembly gaps was 22 for clone mate scaffolding, 17 for retroscaffolding, and 28 for the 

combined scaffolding. This further demonstrates the value added by retroscaffolding. 

6.5 Discussion 

Our preliminary studies on maize genomic (Section 6.2) and the experimental results on 

maize contig data (Section 6.4) demonstrate a proof of concept and the value added by ret

roscaffolding in genome assembly projects. For retroscaffolding to be effective in a genome 

project, it is necessary that the LTR retrotransposons in the genome are both abundant and 

distinguishable. LTR sequences within the same family of LTR retrotransposons are harder 

to distinguish, and repeat-rich genomes (e.g., maize) could have numerous copies of the same 

family scattered across the genome. Therefore, applying retroscaffolding at a genome level 

may cause several spurious retro-links to be established, thereby confounding the process of 

scaffolding. It is for this reason that retroscaffolding is more suited for genome projects involv

ing hierarchical (e.g., BAC-by-BAC) sequencing. Retroscaffolding can also be used to order 

and orient BACs, if the overlapping ends of two consecutive BACs along a tiling path span an 

LTR retrotransposon. 

In genome projects which generate clone mate information, the scaffolding information 

derived from retroscaffolding may in part be already provided by clone mates. In the worst case, 
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even if no new scaffolding information is provided by retroscaffolding, we can benefit from the 

scaffolding information provided by retroscaffolding in two ways: (i) we will have information 

about not only the genomic loci but also the composition of the assembly gaps covered by 

retroscaffolding, as they are expected to contain sequences corresponding to a retrotransposon 

insert. Therefore, we can prioritize the gaps to finish based on this information, and (ii) the 

scaffolding output by retroscaffolding can be used to as supporting evidence to validate the 

output of clone mate information. 

Retroscaffolding will be useful in projects which do not generate clone mate information. 

New sequencing technologies such as the 454 sequencing [Margulies et al. (2005)] that do 

not generate clone mate information are increasingly becoming popular due to their high 

throughput and cost-effectiveness. Such sequencing technologies may be an appropriate choice 

for low-budget sequencing projects, and retroscaffolding could make the task of carrying out 

the assembly in such projects practically feasible. 

Retroscaffolding also provides a mechanism to explore the feasibility of a lower coverage 

sequencing in genome projects. While reducing the sequencing coverage as low as 3X may 

expose more gaps to span LTR retrotransposons in a target genome, it also implies that there 

is less redundancy in fragment data. This might affect the quality of the output assembly, 

especially of those contigs corresponding to the non-repetitive regions of the genome. To 

circumvent this issue in a hierarchical sequencing project, we propose the following iterative 

approach to sequencing and assembly: first, sequence all the BACs at a low coverage and 

assemble them. If a subsequent retroscaffolding reveals the low repeat content in a subset of 

the input BACs, then perform additional coverage sequencing selectively on these BACs, and 

reassemble them with the fragments sequenced from all sequencing phases. In practice, this 

procedure can be repeated until sufficient information is gathered to completely assemble and 

scaffold each BAC. This approach provides a cost-effective mechanism to sequence repeat-rich 

genomes without compromising on the quality of the output assembly. 
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6.6 Concluding Remarks 

Genome projects of several economically important plant crops such as maize, barley, 

sorghum, wheat, etc., are either already underway or are likely to be initiated over the next few 

years. Most of these plant genomes contain an enormous number of retrotransposons that are 

not only expected to confound the assembly process, but are also expected to consume the bulk 

of the sequencing and finishing budget. In contrast to this perspective, the retroscaffolding 

approach proposed in this research offers the possibility of exploiting the abundance of LTR 

retrotransposons, thus serving three main purposes: (i) to scaffold contigs that are output by 

an assembler, (ii) to guide the process of finishing by providing information on the unfinished 

regions of the genome, and (iii) to reduce sequencing coverage without loss of information 

regarding the sequenced genes and their relative ordering. Given that sequencing and finishing 

account for much of the cost in genome projects, continued research in developing this new 

methodology further could have a high impact. 

Several developments have been planned as future work on this research. Specifically, we 

plan to evaluate the collective effectiveness of retroscaffolding and clone mate based scaffolding 

at a larger scale. The algorithmic framework for retroscaffolding is still at an early stage of 

development. Farther validation of the framework on sequenced genomes and at much larger 

scales are essential to ensure an effective and high-quality application of our methodology in 

forthcoming complex genome projects. To this effect, the application of retroscaffolding on the 

on-going maize genome project will provide a good starting point. 
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CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH 

DIRECTIONS 

The need for efficient computational methods for the advancement of genomics research 

cannot be overemphasized. In this doctoral research, we (i) identified some key problems in 

computational genomics that lead to sequence level discoveries of genes, transcriptomes and 

genomes, (ii) advanced the state of research through the design and development of scalable 

efficient algorithms and software solutions, and (iii) applied these new techniques on large real 

world problem instances and established their biological relevance. 

During the early stages of this research, we focused on developing an efficient solution 

to the EST clustering problem, which has been actively pursued for over a decade. While 

several approaches were developed prior to our effort, all these approaches were designed to 

run on serial computers, and have quadratic run-time and/or memory requirements. Our 

effort resulted in the development of the PaCE parallel clustering algorithm and software, 

which we later extended to cluster fragment data in the context of gene-enriched genome 

assembly. The novelty of the PaCE approach lies in its space and time efficiency and its 

capability to exploit the vast computing power and memory easily available through distributed 

memory parallel computers. The results of applying PaCE for clustering several large EST 

data collections and for performing maize gene-enriched genome assembly demonstrate that 

this research has significantly enhanced the problem size reach while also drastically reducing 

the time to solution. To the best of our knowledge, the PaCE method is the first and only 

available massively parallel approach. The PaCE software is freely available to the academic 

community, and has been distributed to over 40 research groups as of this writing. 

We also designed and developed an efficient algorithm and software program to identify LTR 
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retrotransposons, which constitute one of the most abundant classes of repetitive elements in 

several eukaryotic genomes. The results of validating our method, LTR_par, against benchmark 

data shows both superior performance and quality in comparison to previously developed 

approaches. The parallelization supported by our method also makes it a scalable solution for 

identifying LTR retrotransposons in large genomes. 

One of the important stages of a genome assembly project is to scaffold a set of assem

bled contigs so that their order and orientation along a target genome can be identified, and 

sequencing gaps filled through finishing efforts. In this dissertation, we introduced the ret

roscaffolding problem which is a variant of the conventional contig scaffolding problem. This 

new approach to achieving scaffolding does not depend on the availability of clone mate in

formation, and can be useful in projects involving the 454 sequencing strategy. Moreover, in 

projects where clone mate information is available, retroscaffolding would serve as additional 

supporting evidence in the validity of clone mate links and/or complement the scaffolding in

formation provided by clone mate information. Our results on maize BAG data demonstrate 

the utility of retroscaffolding at providing both scaffolding information and valuable insights 

that can be used to potentially reduce finishing and/or sequencing costs in projects targeted 

for genomes with similar or higher LTR retrotransposon content. 

Several functional and algorithmic improvements and developments can be carried out 

along the lines of this dissertation research: 

• The algorithmic ideas and techniques underlying the PaCE method can be easily ex

tended for application in any overlap detection based problem that can be solved by 

performing an all vs. all pairwise sequence comparison. This was partly demonstrated 

by our application of the PaCE method for clustering DNA sequences in the context of 

two different problems — EST clustering and gene-enriched genome assembly. 

• The current functionality of PaCE is limited to analyzing a collection of one "type" of 

DNA sequences — either EST or genomic fragments. This can generalized into a broader 

functionality that has the capability to analyze a heterogenous collection of sequence data. 

Several applications can benefit from such a generalized functionality (see [Emrich et al. 
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(2005)] for details): (i) In a genome assembly project, detecting a contig that "overlaps" 

with several ESTs can provide both structural information and expression evidence for 

a corresponding gene on the contig; while an EST "overlapping" at its two ends to two 

different contigs can be used to identify contigs spanning the same gene, (ii) In a sequence 

clustering project, sequences may be available over a period of time. It is sufficient to 

detect overlaps between the already clustered sequences and a new batch of sequences 

to effect an incremental clustering. For this purpose, we can treat the already clustered 

sequences as one "type" and the new batch as another. 

To achieve this generic functionality of analyzing heterogenous sequence databases, the 

PaCE clustering problem formulation can be expanded into a "rule"-based clustering 

formulation, in which pairwise sequence overlaps are expected to arise only between 

sequences of different types and the overlap detection mechanism is dictated by the type 

of sequences being compared — eg., an overlap between a contig and EST can be detected 

through a spliced alignment technique, while an overlap between a contig and a protein 

sequence can be detected through a DNA-protein alignment technique. 

• Besides LTR retrotransposons, there are several other types of DNA retrotransposons, 

one of which is called the Miniature Inverted Transposable Elements (or MITEs). Al

though much smaller in their lengths, the MITEs have a structure similar to that of LTR 

retrotransposons. They are characterized by inverted terminal repeats (as opposed to 

terminal repeats in the same direction in LTR retrotransposons), target site duplications, 

and a non-coding internal sequence. It will be interesting to see if the ideas underlying 

our LTR-par algorithm can be extended for identifying MITEs. 
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